Electrodynamics - opis przedmiotu

Informacje ogolne	
Nazwa przedmiotu	Electrodynamics
Kod przedmiotu	13.2-WF-FizP-E-S17
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Fizyka
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia	semestr zimowy 2018/2019

Informacie o przedmiocie

Semestr	6
Liczba punktów ECTS do zdobycia	6
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	

Formy zaieć

· · · · · · · · · · · · · · · · · · ·	(
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Ćwiczenia	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

To acquaint students with the basic topics of classical physics, constituting the basis for contemporary physics, including the properties of matter, the theory of electromagnetic radiation and their mutual relations.

Wymagania wstępne

Fundamentals of physics and basis of higher mathematics

Zakres tematyczny

Lecture: Elements of the tensor calculus. Maxwell's equations as a result of the generalization of experimental facts. Stationary fields. Variable electromagnetic fields. Scalar theory of light. Relativistic kinematics and electrodynamics. Motion of the charge in the electromagnetic field. Energy and momentum in electrodynamics and relativistic mechanics.

Classes:

Solving accounting problems from the subject of the lecture.

Metody kształcenia

Conventional lectures, calculate class.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student understands and predicts the mechanisms occurring in physical		• egzamin - ustny, opisowy, testowy i	 Wykład
phenomena		inne	 Ćwiczenia
		• sprawdzian	
The student uses deductive methods to present the theoretical interpretation		• egzamin - ustny, opisowy, testowy i	• Wykład
of previously known experimental facts.		inne	 Ćwiczenia
		 sprawdzian 	

Warunki zaliczenia

Lecture: Written and oral exam. Passing condition - a positive exam grade.

Classes Active presence on exercises, passing tests. Before the exam the student must get a pass from the exercises. **Final grade**: weighted average of exam grades (60%) and classes (40%).

Literatura podstawowa

L. D. Landau, E. M. Lifszic, Teoria pola, PWN, Warszawa 2009.
 J. D. Jackson, Elektrodynamika klasyczna, PWN, Warszawa 1982.
 M. Suffczyński, Elektrodynamika, PWN, Warszawa 1978.
 R. S. Ingarden, A. Jamiołkowski, Elektrodynamika klasyczna, PWN, Warszawa 1980.

Literatura uzupełniająca

[1] D. J. Griffiths, Podstawy elektrodynamiki, PWN, Warszawa 2006.

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 01-08-2018 15:26)

Wygenerowano automatycznie z systemu SylabUZ