Introduction to analysis of astrophysical time series - opis przedmiotu

Informacje ogólne

Nazwa przedmiotu	Introduction to analysis of astrophysical time series
Kod przedmiotu	13.7-WF-FizP-IAATS-S17
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Fizyka
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia	semestr zimowy 2018/2019

Informacje o przedmiocie

Semestr	5
Liczba punktów ECTS do zdobycia	3
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr Krzysztof Maciesiak

Formy zajęć Forma zajęć Liczba godzin w semestrze Forma zaliczenia Liczba godzin w semestrze Liczba godzin w tygodniu Liczba godzin w tygodniu (stacjonarne) (stacjonarne) (niestacjonarne) (niestacjonarne) Zaliczenie na Wykład 15 1 ocenę Ćwiczenia 15 1 Zaliczenie na _ _ ocenę

Cel przedmiotu

Ability to analysing time series based on pulsar observations. Use of Fourier transform and interpretation of results from carrying out time series analysis.

Wymagania wstępne

Finished courses: Basic programming.I ntroduction to higher physics and mathematics. Mathematical analysis.

Zakres tematyczny

- Pulsar emission as a numerical time series.
- Spectral analysis of pulsar emission.
- Fourier series.
- Finding of amplitude and power spectrum of periodic series.
- Application of Fourier transform to calculation of amplitude and power spectrum of chosen periodic series.
- Spectral analysis of non-periodic pulsar emission.
- Spectral analysis of random signal from pulsars.
- Numerical methods of spectral analysis of pulsars:
- a) Rules of analogue-digital signal processing; digital filtering
- b) Discrete Fourier transform DFT
- c) Fast Fourier transform FFT
- d) Numerical calculation of spectral density
- e) Numerical calculation of the cross-spectral density
- Special methods of the spectral analysis of signal from pulsars.

CLASS:

- Working and usage of Fourier transform and fast.

- Time series simulations.

- Searching for periodicities in a sample of real and simulated data using computer programme.

- Spectral analysis of pulsar emission.
- a) Fourier transform
- b) Calculation of amplitude and power spectrum of periodic series
- c) Application of Fourier transform to calculation of amplitude and power spectrum of chosen periodic series
- Spectral analysis of non-periodic pulsar emission.
- Spectral analysis of random signal from pulsars.

Metody kształcenia

Lecture, calculus exercises, writing computer programmes.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student is able to: define amplitude spectrum and find a periodicities in a time series, power spectrum, spectral density, cross-spectral density		 bieżąca kontrola na zajęciach egzamin - ustny, opisowy, testowy i inne sprawdzian 	 Wykład Ćwiczenia
Student should be able to use techniques used in astronomy according to time series analysis e.g. Fourier transform or expansion of the time series into Fourier series. Student knows limitations coming out from used methods or computer programmes		 bieżąca kontrola na zajęciach egzamin - ustny, opisowy, testowy i inne sprawdzian 	 Wykład Ćwiczenia

Warunki zaliczenia

Class: pass all tests and all programming tasks (project).

Lecture: Exam allowed only with a positive class grade. Oral exam. Pass condition - satisfactory grade.

Final grade: 50% class grade+ 50% exam grade.

Literatura podstawowa

[1] E. Ozimek, Podstawy teoretyczne analizy widmowej sygnałów, PWN, Warszawa-Poznań, 1985.

[2] L. H. Koopmans, The spectral analysis of time series, Academic Press, New York, 1974

Literatura uzupełniająca

[1] С. Я. Адзерихо, Введение в линейную алгебру, теорию поля и ряады фурье, Издательство "Вышейшая школа", Минск, 1968.

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 01-08-2018 15:19)

Wygenerowano automatycznie z systemu SylabUZ