Introduction to computer simulations - opis przedmiotu

Informacje ogólne		
Nazwa przedmiotu	Introduction to computer simulations	
Kod przedmiotu	13.2-WF-FizP-ItCS-S17	
Wydział	Wydział Nauk Ścisłych i Przyrodniczych	
Kierunek	Fizyka	
Profil	ogólnoakademicki	
Rodzaj studiów	pierwszego stopnia z tyt. licencjata	
Semestr rozpoczęcia	semestr zimowy 2018/2019	

Informacje o przedmiocie	
Semestr	6
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Laboratorium	45	3	-	-	Zaliczenie na ocenę

Cel przedmiotu

The aim of the course is to gain basic knowledge of computer simulations of selected methods for problems of deterministic and Monte Carlo-type issues. Students should acquire skills of implementation of this knowledge by designing an algorithm and a computer program and then interpreting the results of computer simulations. Specific examples will include e.g. problems of molecular dynamics of a single particle, molecular dynamics with constraints, modeling Brownian motion and other random events for different distributions of random variables.

Wymagania wstępne

Programming skills in C / C + +, Python or Java and knowledge of numerical methods

Zakres tematyczny

- Representation of numbers, excess and underflow errors, truncation error (finite difference method), the stability of numerical algorithms.
- Algorithms for solving the equation of motion: Euler, Verlet, velocity Verlet, leap-frog predictor-corrector algorithm, the choice of the time step, the stability and accuracy of the algorithms, numerical solution of the harmonic oscillator 1D and 2D.
- Monte Carlo algorithms (random number generators, random variables with different probability distributions, Metropolis algorithm, stochastic equations).
- Cellular automata.
- Genetic algorithms.

Metody kształcenia

laboratory exercises, discussions, independent work with a specialized scientific literature in Polish and English, and work with the technical documentation, search for information on the Internet.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Students expand their ability to acquire knowledge in different ways using a variety of sources		aktywność w trakcie zajęćdyskusjaprojekt	 Laboratorium
Students have an extended knowledge of classical physics of interacting systems with particular emphasis on the impact parameters potential impact on the stability and behavior of the studied system	S	aktywność w trakcie zajęćdyskusjaprojekt	• Laboratorium

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Students have expanding awareness of the need to update the technical knowledge on the available		 aktywność w 	 Laboratorium
techniques and simulation results as well as awareness of the impact of research on the development of		trakcie zajęć	
computer technology, including in particular nanotechnology.		dyskusja	
		projekt	
Students have has expertise in the following areas: numerical error analysis, numerical solution of		aktywność w	Laboratorium
differential equations, implementation, and application design to simulate the physical processes of the		trakcie zajęć	
molecular dynamics of interacting particles, integration methods of Monte Carlo, Metropolis algorithm,		dyskusja	
the results of numerical analysis, random number generators		projekt	
They have skills in data analysis, they have knowledge which is acquired during the studies of scientific		aktywność w	Laboratorium
literature		trakcie zajęć	
		dyskusja	
		projekt	

Warunki zaliczenia

Laboratory: positive evaluation of the tests, the execution of the project. The final evaluation of the laboratory: evaluation of tests of 60%, the assessment of the project 40%.

Literatura podstawowa

[1] J. C. Berendsen and W. F. Van Gunsteren, Practical Algorithms for Dynamic Simulations in Molecular dynamics simulations of statistical mechanical systems, Proceedings of the Enrico Fermi Summer School, p.43-45, Soc. Italinana de Fisica, Bologna 1985. 154

[2] Stephen Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601-644 (1983).

[3] Tao Pang, An Introduction to Computational Physics, Cambridge University Press (2006).

Literatura uzupełniająca

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical recipes, The art of scientific computing, third edition 2007.

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 01-08-2018 15:29)

Wygenerowano automatycznie z systemu SylabUZ