Symbolic programming in physical processes simulations - opis przedmiotu

Informacje ogólne

Nazwa przedmiotu Symbolic programming in physical processes simulations
Kod przedmiotu 13.2-WF-FizP-SPPPS-S16
Wydział Wydział Nauk Ścisłych i Przyrodniczych
Kierunek Fizyka
Profil ogólnoakademicki
Rodzaj studiów drugiego stopnia z tyt. magistra
Semestr rozpoczęcia semestr zimowy 2018/2019

Informacje o przedmiocie

2
3
obowiązkowy
angielski

Formy zajęć

Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Laboratorium	30	2	-	-	Zaliczenie na		
					ocenę		

Cel przedmiotu

Students can use a Computer Algebra Systems (Mathematica, Sage, Maxima as examples) in symbolic problem solving in physics and verification of analytical calculations.

Wymagania wstępne

Knowledge of calculus and linear algebra and the basis of classical mechanics, classical electrodynamics and quantum mechanics. Programming in C or Fortran.

Zakres tematyczny

- 1. Introduction to computer algebra (wxMaxima, Mathematica):
 - Sessions, evaluation of expressions, environment variables,
 - Differentiation and integration,
 - Systems of linear equations,
 - 2D and 3D plots and data visualization,
 - Differential equations.
- 2. Classical Mechanics:
 - Harmonic oscillator,
 - Coupled harmonic oscillators,
 - Two-body problem.
- 3. Electrodynamics:
 - Discrete distribution of charges,
 - Poisson equation,
 - Charged particle in an electromagnetic field.
- 4. Quantum Mechanics:
 - Potential barrier,
 - Potential well,
 - Harmonic oscillator,
 - Hydrogen atom.

Metody kształcenia

Laboratory classes in the computer lab. Working in groups. Joint solving of more complex or laborious examples.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole	Metody weryfikacji	Forma zajęć
	efektów		
Student can present a problem in terms of the physical laws and principles to propose its		 bieżąca kontrola na 	 Laboratorium
mathematical model.		zajęciach	

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student can use symbolic and numerical calculations in the CAS to solve physical problems; is able to analyze the obtained solution and perform its verification by comparison with known analytical solution (if it exists).		 bieżąca kontrola na zajęciach 	• Laboratorium
Student can use the CAS system to analyze the experimental data and for graphical representations of data; is able to analyze the results, present and discuss conclusions.		 bieżąca kontrola na zajęciach 	• Laboratorium

Warunki zaliczenia

The condition of positive assessment is the accomplishment of all programming exercises.

Final assessment: the weighted average of the final test (50%) and programming exercises (50%).

Literatura podstawowa

[1] L. D. Landau, E. M. Lifszyc, Mechanics, Vol. 1, (3rd ed.), Butterworth-Heinemann 1976.

[2] D. J. Griffiths, Introduction to Electrodynamics, (3rd ed.), Addison Wesley 1999.

- [3] L. Piela, Ideas of Quantum Chemistry, (1st ed.), Elsevier 2006.
- [4] S. Wolfram, The mathematica book, 5-th ed., Wolfram Media 2003.
- [5] http://maxima.sourceforge.net/docs/tutorial/en/gaertner-tutorial-revision/Contents.htm

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 28-06-2018 17:48)

Wygenerowano automatycznie z systemu SylabUZ