Introduction to atomic and molecular physics - opis przedmiotu

Informacje ogólne

Nazwa przedmiotu Introduction to atomic and molecular physics Kod przedmiotu 13.2-WF-FizD-IAMP-S17
•
Wydział Wydział Nauk Ścisłych i Przyrodniczych
Kierunek Fizyka
Profil ogólnoakademicki
Rodzaj studiów drugiego stopnia z tyt. magistra
Semestr rozpoczęcia semestr zimowy 2018/2019

Informacje o przedmiocie

2
7
obowiązkowy
angielski
Anatol Nowicki

Formy zajęć

Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia	
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)		
Wykład	30	2		-	Egzamin	
Ćwiczenia	30	2	-	-	Zaliczenie na	
					ocenę	

Cel przedmiotu

The aim of the course is to teach the students methods and applications of quantum mechanics in description of matter-matter interactions; at the scale of one or a few atoms and energy scales around several electron volts. In particular we present the approximated methods, method of self consistent field and variational methods in atomic physics.

Wymagania wstępne

Quantum mechanics and Classical electrodynamics courses.

Zakres tematyczny

LECTURE: One-electron atoms. Eigenvalues, quantum numbers, degeneracy, Zeeman effect, spin. The orbit-spin interaction. Identical particles, Pauli rule Multielectron atoms. Hartree-Fock theory, the self consistent field. The periodic table. Optical excitations, atomic spectra. Molecules, Born-Oppenheimer theory, LCAO MO theory. Molecular spectra, rotation, vibration-rotation and electron spectra. Raman effect.

CLASS: A hydrogen atom, quantum numbers, atom orbitals, spin. Multielectron atoms, the periodic table. The orbit-spin interaction, atomic spectra. Molecules spectra.

Metody kształcenia

Conventional lectures, calculate class.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Application of mathematical methods in solving physical		 bieżąca kontrola na zajęciach 	 Wykład
problems		• egzamin - ustny, opisowy, testowy i inne	• Ćwiczenia
Skill of theoretical interpretation of experimental facts		 bieżąca kontrola na zajęciach 	• Wykład
		• egzamin - ustny, opisowy, testowy i inne	 Ćwiczenia

Warunki zaliczenia

LECTURE: The exam CLASS: Credits of exercises

Literatura podstawowa

[1] W. Kołos, J. Sadlej, Atom i cząsteczka, WNT, Warszawa 2007.

[2] J. Ginter, Wstęp do fizyki atomu, cząsteczki i ciała stałego, PWN, Warszawa 1986.

[3] I. Białynicki-Birula, M. Cieplak, J. Kamiński, Teoria kwantów, PWN, Warszawa 1991.

[4] W. Kołos, Chemia kwantowa, PWN, Warszawa 1980.

[5] L. Schiff, Mechanika kwantowa, PWN, Warszawa 1977.

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 28-06-2018 17:59)

Wygenerowano automatycznie z systemu SylabUZ