Quantum physics II - opis przedmiotu

Informacje ogólne		
Nazwa przedmiotu	Quantum physics II	
Kod przedmiotu	13.2-WF-FizD-QP-II-S18	
Wydział	Wydział Nauk Ścisłych i Przyrodniczych	
Kierunek	Fizyka	
Profil	ogólnoakademicki	
Rodzaj studiów	drugiego stopnia z tyt. magistra	
Semestr rozpoczęcia	semestr zimowy 2018/2019	

Informacje o przedmiocie	
Semestr	3
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. Piotr Rozmej

Formy zaję	Ć				
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Egzamin
Ćwiczenia	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

To teach the student several general features of quantum systems. To give foundations for various possible applications.

Wymagania wstępne

Knowledge of first and second course of quantum mechanics.

Zakres tematyczny

LECTURE:

- The density operator.
- The evolution operator.
- Gauge invariance.
- Unstable states; lifetimes.
- Bound sates of a particle in a potential well of arbitrary shape.
- Unbound states of a particle in the presence of a potential well or barrier of arbitrary shape.

CLASS:

 $Essentially\ the\ same\ topics, but\ with\ extension\ of\ particular\ calculations\ and\ interpretations\ on\ several\ examples.$

Metody kształcenia

Lectures on problems and discussions. Oral practice, in which students solve tasks.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Is able to study both bounded and unbounded states of a particle in arbitrary potential.		egzamin - ustny, opisowy, testowy i inneodpowiedź ustnasprawdzian	WykładĆwiczenia
The student is aware of importance of density operator in quantum mechanics.		egzamin - ustny, opisowy, testowy i inneodpowiedź ustnasprawdzian	WykładĆwiczenia

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student is familiar with unbound states of physical systems their		• egzamin - ustny, opisowy, testowy i inne	 Wykład
decay and lifetimes.		 odpowiedź ustna 	 Ćwiczenia
		• sprawdzian	
The student knows gauge invariance and its consequences.		• egzamin - ustny, opisowy, testowy i inne	Wykład
		 odpowiedź ustna 	 Ćwiczenia
		• sprawdzian	
The student knows methods of studying time evolution of quantum		• egzamin - ustny, opisowy, testowy i inne	Wykład
systems.		 odpowiedź ustna 	 Ćwiczenia
		sprawdzian	

Warunki zaliczenia

LECTURE: A course credit for the lectures is obtained by taking a final exam composed of tasks of varying degrees of difficulty.

CLASS: During the classes the preparation of the students will be checked as well as their understanding of the lecture content at the time of the lectures.

To obtain a course credit for the exercises 50% of the maximum number of points will be required, which can be achieved through two cumulative tests. A student who achieves at least 10% of the maximum points and who does not exceed the class absence limit has the right to a re sit test of the entire material before the examination date. The result of the exam is also affected by class participation and preparation for the class.

Entrance to the exam requires prior accreditation of the course exercises.

Literatura podstawowa

[1] C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, 1992.

[2] I. Białynicki-Birula, M. Cieplak, J. Kamiński, Theory of quanta, PWN, Warszawa 2001.

[3] Pdf file delivered to the students.

Literatura uzupełniająca

[1] A. L. Schiff, Quantum mechanics, PWN, Warszawa 1987.

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 28-06-2018 23:02)

Wygenerowano automatycznie z systemu SylabUZ