Introduction to scripting language - course description

General information		
Course name	Introduction to scripting language	
Course ID	13.2-WF-FizP-ISL-S18	
Faculty	Faculty of Physics and Astronomy	
Field of study	Physics	
Education profile	academic	
Level of studies	First-cycle studies leading to Bachelor's degree	
Beginning semester	winter term 2018/2019	

Course information		
Semester	2	
ECTS credits to win	2	
Course type	obligatory	
Teaching language	english	
Author of syllabus	dr Marcin Kośmider	

Classes forms					
The class form	Hours per semester (full-time)	Hours per week (full-time	e) Hours per semester (part-time)	Hours per week (part-time	e) Form of assignment

Aim of the course

This course is designed for students without or with a little programming experience. During this course you will learn fundamentals of programming with a strong focus on techniques using in Python. The examples and problems discussed in this course are taken from broad range areas as text processing, scientific programming, databases.

Prerequisites

Basic computer skills

Scope

- 1. Python language characteristic, history
- 2. Language syntax, PEP-8 coding standard
- ${\it 3. Assignment operator, dynamic typing, mathematical and logical operators}$
- 4. Loops and conditions
- 5. Strings, lists, tuples and dictionaries, elements of OOP programming
- 6. Functions
- 7. Exceptions
- 8. Modules
- 9. Input/Output operations
- 10. virtual environment

Teaching methods

computer lab, project, group work, discussion, brainstorming

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Student knows the basics of Python language and can write a simple	 K1A_W04 	 a check work 	 Laboratory
program using the basic mechanisms of this language. He can run and	 K1A_W09 	 a discussion 	
debug a self-written code	 K1A_U04 	 activity during the classes 	
		 an observation and evaluation of 	
		activities during the classes	
		 an observation and evaluation of the 	9
		student's practical skills	
		 an ongoing monitoring during classe 	es

Outcome description	Outcome symbols	Methods of verification	The class form
Student can choose and install the appropriate software and modules	 K1A_W04 	 a discussion 	 Laboratory
	 K1A_W09 	 an ongoing monitoring during classes 	3
	 K1A_U04 		
Student can write a program to analyze a small amount of data and a	• K1A_W04	 activity during the classes 	 Laboratory
program that performs a simple simulation.	 K1A_W09 	• an observation and evaluation of the	
	 K1A_U03 	student's practical skills	
	 K1A_U04 	 an ongoing monitoring during classes 	}

Assignment conditions

Minimum 50% of points from tests and passing the semester program. Final mark counted as weighted average - 60% test score, 40% evaluation of the final project.

Recommended reading

Python 3. Proste wprowadzenie do fascynującego świata programowania, Zed. A. Shawn, Helion 2018

https://wiki.python.org/moin/BeginnersGuide

Further reading

Internet

Notes

Modified by dr hab. Piotr Lubiński, prof. UZ (last modification: 22-08-2018 11:06)

Generated automatically from SylabUZ computer system