Lecture III-P - opis przedmiotu

Informacje ogólne				
Nazwa przedmiotu	Lecture III-P			
Kod przedmiotu	13.2-WF-FiAP-W-III-P- 18			
Wydział	Wydział Nauk Ścisłych i Przyrodniczych			
Kierunek	Fizyka i Astronomia			
Profil	ogólnoakademicki			
Rodzaj studiów	trzeciego stopnia z tyt. doktora			
Semestr rozpoczęcia	semestr zimowy 2018/2019			

Informacje o przedmiocie

Semestr	4			
Liczba punktów ECTS do zdobycia	3			
Typ przedmiotu	obowiązkowy			
Język nauczania	angielski			
Sylabus opracował	prof. dr hab. Mirosław Dudek			

Formy zajęć

Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia		
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)			
Wykład	30	2	-	-	Egzamin		

Cel przedmiotu

Mathematical foundations of stochastic processes and numerical methods for their modeling.

After the course, knowledge of both theory and its practical application at the level enabling independent scientific work is expected.

Wymagania wstępne

Knowledge of mathematical analysis, basics of physics, probability theory, programming skills.

Zakres tematyczny

- 1. Introduction to the Langevin equation and Brownian motion
- 2. Wiener processes
- 3. Stochastic integral calculus (Ito integral and Stratonovich integral)
- 4. Applications of Wiener processes (modeling of diffusion and chemical reactions)
- 5. alfa-stable processes and their applications

Metody kształcenia

Lecture with the use of multimedia.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The students are able to use the method of stochastic processes to analyze	• SD_W01	• egzamin - ustny, opisowy,	 Wykład
random systems, physical and biological systems, exchange processes.	• SD_W02	testowy i inne	
	• SD_W04		
The students can make contact with specialists.	• SD_U01	• egzamin - ustny, opisowy,	 Wykład
	• SD_U02	testowy i inne	

Warunki zaliczenia

The exam is in a written form. The students receive a problem task, in which they must choose the right method of data analysis and must interpret the results obtained.

Literatura podstawowa

[1] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland Personal Library 1992

[2] C.W. Gardiner, Handbook of stochastic methods fo Physics, Chemistry and the Natural Sciences, Springer-Verlag 1983

[3] A. Janicki, A. Weron, Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes, Marcel Dekker. Inc. 1994

[4] A. Weron, R. Weron, Computer Simulation of Levy \alpha-Stable Variables and Processes, Lecture Notes in Physics 457, 379-392, Springer-Verlag 1995

Literatura uzupełniająca

[1] Z. Schuss, Teoria i zastosowania stochastycznych równań całkowych, PWN, Warszawa 1989

Uwagi

Zmodyfikowane przez dr Joanna Kalaga (ostatnia modyfikacja: 30-08-2018 10:38)

Wygenerowano automatycznie z systemu SylabUZ