Quantum mechanics foundations - course description

General information		
Course name	Quantum mechanics foundations	
Course ID	13.2-WF-FizP-QMF-S17	
Faculty	Faculty of Physics and Astronomy	
Field of study	Physics	
Education profile	academic	
Level of studies	First-cycle studies leading to Bachelor's degree	
Beginning semester	winter term 2019/2020	

Course information		
Semester	5	
ECTS credits to win	6	
Course type	obligatory	
Teaching language	english	
Author of syllabus	• prof. dr hab. Piotr Rozmej	
	 prof. dr hab. Krzysztof Urbanowski 	

Classes forms							
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment		
Lecture	30	2	-	-	Exam		
Class	30	2	-	-	Credit with grade		

Aim of the course

Familiarize students with the interpretation of quantum phenomena and mathematical foundations of the description of these phenomena.

Prerequisites

Familiarize students with the interpretation of quantum phenomena and mathematical foundations of the description of these phenomena.

Scope

Lecture:

- 1. Experiments and observations that led to the emergence of quantum mechanics.
- 2. Postulates of quantum mechanics.
- 3. Assigning operators to physical observables.
- ${\bf 4.} \ Eigenvalue \ problems \ for \ position, \ momentum \ and \ angular \ momentum \ operators.$
- 5. Postulate on mean (expectation) values, intrpretation of the wave function.
- 6. Position representation, momentum representation.
- 7. Problem of simultaneous measurements of several physical quantities, uncertainty principle.
- 8. Time evolution, wave-particle duality
- 9. Hydrogen atom.
- 10. Harmonic oscillator
- 11. Potential barrier.
- 12. Spin and statistics, fermions, bosons.
- 13. Applications in medical physics.

Theoretical class: Problems and exercises for the lecture: elements of a theory of the linear operators in the Hilbert space, uncertainty principle, the square potential barrier, potential well, symmetries, , rotational symmetries - relationship with conservation laws.

Teaching methods

Conventional lecture, classes.

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Outcome description	Outcome syl
The student understands the essence of quantum effects and processes, understands and can explain	• K1.
descriptions of physical phenomena and processes using mathematical language, can independently	• K1.
reproduce the claims and the rights and selected calculations. The student is able to create a theoretical	• K1.
model of the phenomenon and associate it with the results of measurements. The student can use the	• K1.
formalism of quantum mechanics to describe simple physical phenomena on the quantum level, is able to	• K1.
analyze and solve problems on the basis of physical knowledge and information from the available literature	• K1.
$sources, databases \ and \ Internet \ resources. \ The \ student \ can \ independently \ acquire \ knowledge \ and \ develop$	
their skills, using a variety of sources (in Polish and foreign) and new technologies. The student is aware of	
this knowledge and skills, and understands the need to know the possibilities of continuous further training $\frac{1}{2}$	

Assignment conditions

Lectures: passing a final written exam,

Classes: passing a final test.

Outcome description

in.

Before taking the examination the student needs to obtain passing grade in the computational exercises.

The final grade: the arithmetic average of the examination grade and computational exercises grade

Recommended reading

- 1. P. Rozmej, Foundation of quantum mechanics, pdf file for students.
- 2. S. Brandt, H.D. Dahmen, The picture book of quantum mechanics, Springer, 2001.

Further reading

[1] J. Brojan, J. Mostowski, K. Wódkiewicz, Zbiór zadań z mechaniki kwantowej, PWN 1978.

[2] L. I. Schiff, Mechanika kwantowa, PWN, 1977 (Quantum Mechanics, McGraw-Hill, New York).

Notes

Modified by dr hab. Piotr Lubiński, prof. UZ (last modification: 19-02-2020 22:34)

Generated automatically from SylabUZ computer system

Outcome symbols Methods of verification

- 1A_W02 •
- K1A_W03
- K1A_U01
- K1A_U02
- K1A_U07
- K1A_K01
- a quiz
- an exam oral, descriptive, test and other
- an observation and evaluation of activities during the classes
- Lecture

The class form

• Class