Metody aktuarialne - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Metody aktuarialne
Kod przedmiotu	11.5-WK-MATD-MA-W-S14_pNadGenG9Y45
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Mathematics
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2019/2020

Informacje o przedmiocieSemestr2Liczba punktów ECTS do zdobycia7Typ przedmiotuobieralnyJęzyk nauczaniapolskiSylabus opracował• dr hab. Mariusz Michta, prof. UZ

Formy zajęć

· · · · · · · · · · · · · · · · · · ·	(-				
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Ćwiczenia	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

Knowledge about selected topics on actuarial and insurance mathematics: mortality models, net premium calculations, reserves, collective risk model, ruin probability.

Wymagania wstępne

Mathematical analysis, probability theory, introduction to financial mathematics, foundations of stochastic analysis.

Zakres tematyczny

- 1. Mortality models, survival probability, life tables.
- 2. Life insurances payable at the moment of death.
- 3. Life insurances payable atth end of the Lear of death.
- 4. Single net premiums and relationships between different kinds of insurances.
- 5. Live annuities and their single net premiums.
- 6. Commutation function formulas for annuities and insurances.
- 7. Net premiums: fully continuous and discrete.
- 8. Net premium reserves: prospective and retrospective formulas .
- 9. Multiply life functions: the joint-life status and the last-survivor status. Insurances and annuities.
- 10. Multiply decrement models-basic kinds of insurances and premium calculations.
- 11. Collective risk models. Lundberg's risk model and Cramer-Lundberg's estimation of ruin probability.

Metody kształcenia

Lectures: actuarial and insurance mathematics: mortality models, net premium calculations,

reserves, collective risk model, ruin probability.

Classes: exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Students are able to estimate expected value of future-lifetime and to use life-tables for net- premium calculations.		 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne 	WykładĆwiczenia
Students are familiar with international actuarial notation and different kinds of insurances; know basic analytical mortality, equivalence principle for net-premium and mathematical aspects of classical risk theory.		 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne 	WykładĆwiczenia

Warunki zaliczenia

Evaluation of individual exercises, final exam and grades.

Literatura podstawowa

1. M. Skałba, Ubezpieczenia na życie, WNT, Warszawa, 2002.

- 2. T. Rolski, B. Błaszczyszyn, Podstawy matematyki ubezpieczeń na życie, WNT, Warszawa, 2005.
- 3. N. Bowers, H.U. Gerber et all, Actuarial Mathematics, Soc. of Actuaries, Illinois, 1986.
- 4. J. Grandell, Aspects of Risk Theory, Springer, Berlin, 1992.

Literatura uzupełniająca

- 1. W. Ronka-Chmielowiec, Ryzyko w ubezpieczeniach-metody oceny, AE, Wrocław, 1997.
- 2. M. Dobija, E. Smaga, Podstawy matematyki finansowej i ubezpieczeniowej, WNT, Warszawa,
- 3. H. U. Gerber, Life Insurance Mathematics, Springer, Berlin, 1990.

Uwagi

Zmodyfikowane przez dr Alina Szelecka (ostatnia modyfikacja: 03-07-2019 12:29)

Wygenerowano automatycznie z systemu SylabUZ