Actuarial Methods - course description

General information		
Course name	Actuarial Methods	
Course ID	11.5-WK-MATD-MA-W-S14_pNadGenG9Y45	
Faculty	Faculty of Mathematics, Computer Science and Econometrics	
Field of study	Mathematics	
Education profile	academic	
Level of studies	Second-cycle studies leading to MS degree	
Beginning semester	winter term 2019/2020	

Course information	
Semester	2
ECTS credits to win	7
Course type	optional
Teaching language	polish
Author of syllabus	• dr hab. Mariusz Michta, prof. UZ

Classes forms							
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment		
Lecture	30	2	-	-	Exam		
Class	30	2	-	-	Credit with grade		

Aim of the course

Knowledge about selected topics on actuarial and insurance mathematics: mortality models, net premium calculations, reserves, collective risk model, ruin probability.

Prerequisites

Mathematical analysis, probability theory, introduction to financial mathematics, foundations of stochastic analysis.

Scope

- 1. Mortality models, survival probability, life tables.
- 2. Life insurances payable at the moment of death.
- 3. Life insurances payable atth end of the Lear of death.
- 4. Single net premiums and relationships between different kinds of insurances.
- 5. Live annuities and their single net premiums.
- 6. Commutation function formulas for annuities and insurances.
- 7. Net premiums: fully continuous and discrete.
- 8. Net premium reserves: prospective and retrospective formulas .
- 9. Multiply life functions: the joint-life status and the last-survivor status. Insurances and annuities.
- 10. Multiply decrement models-basic kinds of insurances and premium calculations.
- 11. Collective risk models. Lundberg's risk model and Cramer-Lundberg's estimation of ruin probability.

Teaching methods

Lectures: actuarial and insurance mathematics: mortality models, net premium calculations, reserves, collective risk model, ruin probability.

Classes: exercises.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Students are able to estimate expected value of future-lifetime and to use life-tables for net-premium calculations.		 activity during the classes an exam - oral, descriptive, test and other 	• Lecture • Class
Students are familiar with international actuarial notation and different kinds of insurances; know basic analytical mortality, equivalence principle for net-premium and mathematical aspects of classical risk theory.		 activity during the classes an exam - oral, descriptive, test and other 	• Lecture • Class

Assignment conditions

Evaluation of individual exercises, final exam and grades.

Recommended reading

- 1. M. Skałba, Ubezpieczenia na życie, WNT, Warszawa, 2002.
- 2. T. Rolski, B. Błaszczyszyn, Podstawy matematyki ubezpieczeń na życie, WNT, Warszawa, 2005.
- 3. N. Bowers, H.U. Gerber et all, Actuarial Mathematics, Soc. of Actuaries, Illinois, 1986.
- 4. J. Grandell, Aspects of Risk Theory, Springer, Berlin,1992.

Further reading

- 1. W. Ronka-Chmielowiec, Ryzyko w ubezpieczeniach-metody oceny, AE, Wrocław, 1997.
- 2. M. Dobija, E. Smaga, Podstawy matematyki finansowej i ubezpieczeniowej, WNT, Warszawa,
- 3. H. U. Gerber, Life Insurance Mathematics, Springer, Berlin,1990.

Notes

Modified by dr Alina Szelecka (last modification: 03-07-2019 12:29)

Generated automatically from SylabUZ computer system