Szeregi czasowe - opis przedmiotu

Informacje ogólne

Szeregi czasowe
11.1-WK-MATD-SC-L-S14_pNadGenMH8KN
Wydział Nauk Ścisłych i Przyrodniczych
Mathematics
ogólnoakademicki
drugiego stopnia z tyt. magistra
semestr zimowy 2019/2020

Informacje o przedmiocie

Semestr	4
Liczba punktów ECTS do zdobycia	8
Typ przedmiotu	obieralny
Język nauczania	polski
Sylabus opracował	

Formy zajęć							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Laboratorium	30	2	-	-	Zaliczenie na ocenę		
Wykład	30	2	-	-	Zaliczenie na ocenę		
Ćwiczenia	30	2	-	-	Zaliczenie na ocenę		

Cel przedmiotu

Learning models of time series and their forecasting methods.

Wymagania wstępne

Probability Theory, Mathematical Statistics.

Zakres tematyczny

Lecture

- 1. Linear difference equations, polynomial characteristic; solution form; G-Transform (4 hours)
- 2. Time series as a stochastic proces and statistical data; Classical decomposition of time series; .Modelling of trend and seasonality; Smoothing methods (moving-avagrege, exponential smoothing, Holt method). *ex ante* and *ex post*. forecastings (4 hours.)
- Linear time series: Autocovariance and autocorrelation function, weakly and strictly stationary time series, estimation of autocovariance and autocorrelation function, spectra properties of stationary models, periodogram and its relationship with estimation of autocovariance function; sampling spectrum; power spectrum and spectral density function; generating function of autocovariance; conditions of stationarity and invertibility. (8 hours.)
- 4. Autoreggresive models AR(p): stationarity and invertibility conditions, Autocorrelation; spectrum, Yule-Walker equations; Partial autocorrelation function; identification of models AR; estimation of parameters and forecasting. (4 hours.)
- 5. Moving average models MA(q): stationary and invertibility conditions, Autocorrelation function, spectrum, identyfication of models MA, estymation of parameters, forecasting. (4 hours.)
- Mixed models of autoregression and moving average ARMA(p,q): stationarity and invertibility conditions; autocorrelation function; spectrum; identification of ARMA; forecasting (2 hours)
- 7. Linear stationary models ARIMA(p,d,q): representation in difference form, random impulses and inverse form, identification of models ARIMA, forecastings. (4 godz.)

Class

- 1. Solving difference equations. (4 hours.)
- 2. Smothing of time series (analytic and mechanics metods). (3 hours.)
- 3. Computing of seasonal indicators. (2 hours.)
- 4. Computing of ex post and ex ante forecasts. (3 hours.)
- 5. Verification of stability of linear filters. (4 hours.)
- 6. Verification of weak and strict stationarity of time series. (4 hours)
- 7. Computing of autocorrelation and partial autocorrelation function in models AR, MA, ARMA, ARIMA. (4 hours.)
- 8. Calculation of parameters of models using Yule-Walker equations. (2 hours)
- 9. Calculation of forecastings of models AR, MA, ARMA, ARIMA. (4 hours)

Laboratory

- 1. Polynomial models of trend. (3 hours)
- 2. Seasonal variation models. (2 hours)
- 3. Prediction based on trend and seasonall models. (3 hours)
- 4. AR(p) models. (4 hours)
- 5. MA(q) models. (4 hours)
- 6. ARMA(p,q) models. (4 hours)
- 7. Verification of stationarity of model: unit root test. (2 hours)
- 8. ARIMA(p,d,q) models. (4 godz.)
- 9. Procedurs of elimination of seasonality. (4 godz.)

Metody kształcenia

Lecture. Class. On laboratory - solving tasks using computer package GRETL, R.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student knows matematical models of time series and understand their applicability.	• K_W06	• test	 Wykład
Student can explain and verify the stability of unstability of linear filter	• K_U05	testCurrent control in class	• Ćwiczenia
Student can calculate the function of autocorrelation and partial autocorrelation in ARMA models.	• K_U10	testCurrent control in class	• Ćwiczenia
Student can determine a forecast based on the time series model.	• K_U13	testPerformance of laboratory reports	LaboratoriumĆwiczenia
Student can determine a proper model of time series adapter to data and determine its parameters	a • K_U13	• Performance of laboratory reports	• Laboratorium

Warunki zaliczenia

A student performs a report (laboratory) in which selects and solves a forecasting problem using time series models. The positive mark from laboratory is possible if the mark from report is positive. A student not attending to laboratory is not classified. Two tests (class) with mathematical tasks. The person not attending to class is not classified. One test (lecture) multiple choice.

Final mark 0 is a weighted average of marks from laboratory OL, from class OC and lecture OW, and is determined by the formula: 0=0.4*0L+0.4*0C+0.2*0W.

Literatura podstawowa

- 1. P. J. Brockwell, R. A. Davis, Introduction to time series and forecasting, Springer, New York, 2002.
- 2. G. Kirchgaessner, J. Wolters, Introduction to modern time series analysis, Springer, Berlin, 2007.
- 3. R. S. Tsay, Analysis of Financial Time Series, Wiley&Sons, New Jersey, 2005.

Literatura uzupełniająca

- 1. G. E. P. Box, G. M. Jenkins, Analiza szeregów czasowych. Prognozowanie i sterowanie, PWN, Warszawa, 1983.
- 2. T. Kufel, Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu Gretl, PWN, Warszawa, 2007.

Uwagi

Zmodyfikowane przez dr Robert Dylewski, prof. UZ (ostatnia modyfikacja: 20-09-2019 11:51)

Wygenerowano automatycznie z systemu SylabUZ