
Foundations of software modelling - course description
General information
Course name Foundations of software modelling
Course ID 11.3-WE-INFP-FounofSM-Er 
Faculty Faculty of Computer Science, Electrical Engineering and Automatics 
Field of study Computer Science 
Education profile academic
Level of studies First-cycle Erasmus programme
Beginning semester winter term 2019/2020

Course information
Semester 5
ECTS credits to win 6 
Course type optional
Teaching language english
Author of syllabus dr inż. Łukasz Hładowski

Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 30 2 - - Credit with grade
Project 15 1 - - Credit with grade

Aim of the course
- obtaining basic knowledge about software modelling

- familiarizing students with practical applications of software modelling for simple software systems

- familiarizing students with proper way of practical implementation of solution to simple problems using software design patterns

Prerequisites
Object-oriented programming, Software Engineering

Scope
Introductory issues. Background and history of modern modelling techniques. Unified process of application life cycle. System analysis and design. Object paradigm. Object 
modelling and its role in design of information systems. Class-Responsibility-Collaboration (CRC) diagrams. Software production processes.

Introduction to Unified Modelling Language (UML) notation and diagrams.Genesis and purpose of UML. Structural modelling. Basic notions and elements of object architecture: 
classes, objects, abstractions, encapsulation, inheritance, polymorphism, communication, relations and associations between objects. Static structural diagrams: class and 
object diagrams.Association modelling: aggregation, composition, generalization, specialization, dependencies and realization. Packages and subsystems. Types, interfaces 
and implementation classes. Implementation diagrams: component and deployment diagrams. Requirements and their specification. Use case diagrams.
Use case analysis: inclusion, extension, grouping and generalization. Behavioural modelling. Sequence and collaboration diagrams. Roles, messages and stimuli.
Interactions and collaborations. Analysis of system states. State and activity diagrams. Flow transfer. Decisions. Concurrency. Signals and communication

Design patterns. Formulation of programming problems. Overview of most popular construction, structural and behavioural design patterns. Creational and testing patterns.

Practical issues. Work with use cases. General overview on design, deployment and testing. Presentation of dedicated UML design tools.

Teaching methods
lecture: brainstorm, discussion, practical tasks, conventional lecture

laboratory: brainstorm, working with source files, discussion, working in groups, practical tasks, conventional lecture

project: brainstorm, working with source files, discussion, working in groups, practical tasks, conventional lecture

Learning outcomes and methods of theirs verification
Outcome description Outcome 

symbols
Methods of verification The class form

Understands the need for unit tests and can implement them for simple cases. Can use 
simple programming tools for testing. 

a project Lecture
Project

https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/


Outcome description Outcome
symbols

Methods of verification The class form

Can implement a fragment of simple system in chosen programming language using 
design patterns and proper object-oriented techniques.

a project Project

Uses UML for description and formulation of solutions to programming problems. a project
a quiz
egzamin

Lecture
Laboratory
Project

Can implement simple design patterns in chosen programming language. Knows 
disadvantages and advantages of a chosen pattern and can propose alternative 
solution. 

a project
a quiz
an examination test with score 
scale

Lecture
Laboratory
Project

Can notice and describe advantages and disadvantages of proposed solution during the 
UML modelling phase.

a project Project

Knows, understands and uses simple rules for software engineering. a project
a quiz
an examination test with score 
scale

Lecture
Laboratory
Project

Can choose proper tools for software engineering. a quiz
an ongoing monitoring during 
classes

Laboratory

Can notice and describe advantages and disadvantages of the proposed solution by 
source code analysis. Can refactor simple code.

a project Lecture
Project

Assignment conditions
Lecture - a credit is given for obtaining a passing grade for all exams administered at least once per semester

Laboratory - to receive a final passing grade student has to receive passing grades for all tasks required by the curriculum.

Project - to receive a final passing grade student has to receive passing grades for all tasks and projects required by the curriculum..

Calculation of the final grade = lecture: 40% + laboratory: 20% + project: 40%

Recommended reading
 

1. Martin R.C.: Clean Code: A Handbook of Agile Software Craftsmanship, Prentice Hall, 2008

2. Beck K.: Test Driven Development: By Example, Addison-Wesley Professional, 2002

3. Freeman E., Freeman E., Bates B., Sierra K.:Head First Design Patterns!, O'Reilly Media, 2004

4. UML @ Classroom, Seidl, M., Scholz, M, Springer International Publishing, 2015

5. Larman C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition), Prentice Hall, 2004

Further reading
 

1. Martin R.C., Martin M.: Agile Principles, Patterns, and Practices in C#, Prentice Hall, 2006

2. Way J.: Laravel Testing Decoded, Leanpub 2013

Notes

Modified by prof. dr hab. inż. Andrzej Obuchowicz (last modification: 27-10-2019 09:37)

Generated automatically from SylabUZ computer system


