Computational logic - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Computational logic
Kod przedmiotu	11.3-WE-INFP-CompLogic
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Informatyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2019/2020

Informacje o przedmiocieSemestr1Liczba punktów ECTS do zdobycia4Typ przedmiotuobowiązkowyJęzyk nauczaniaangielskiSylabus opracowałdr inż. Jacek Tkacz

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na
					ocenę
Laboratorium	30	2	-		Zaliczenie na
					ocenę

Cel przedmiotu

Introduce students to the basics of Boolean algebra and sentence calculus.

To familiarize students with methods of proving tautology.

Familiarizing students with the use of logic and set theory in computer science.

Wymagania wstępne

no requirements

Zakres tematyczny

Propositional calculus. Syntax and semantics. The concept of tautology. Methods of proving tautology. Rights of the propositional calculus.

Sets and set elements. Defining subsets of the set. Equality of sets. Operations on sets. The laws of sets theory and the ways of proving them.

Boolean algebra. Logical functions. Minimize logical functions. Logical Function Representation Methods (BDD). Study of the satisfying of logical functions.

Logic and set theory in computer science. Logical relations.

Elements of symbolic logic and sequent calculus.

Metody kształcenia

Lecture: Conventional lecture.

Laboratory: Practical exercises performed on the board and using computer software.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Student can practically use logic and set theory in computer science.	• sprawdzian	 Laboratorium
Student knows and is able to interpret concepts in the field of logic and set	• sprawdzian	• Wykład
theory, and is able to apply them to IT problems.	 test końcowy 	
	 zaliczenie - ustne, opisowe, 	testowe i
	inne	
tudet is able to use logic, proof of assertions, graph theory and recursion	• sprawdzian	• Wykład
o solve problems of information technology.	 test końcowy 	
	 zaliczenie - ustne, opisowe, 	testowe i
	inne	

Warunki zaliczenia

Lecture - the main condition to get a pass are sufficient marks in written tests

Laboratory - the main condition to get a pass is to obtain positive marks from the written tests

Literatura podstawowa

1) Mordechai Ben-Ari. Mathematical Logic for Computer Science, 2012

2) Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving, 1986, 2015

3) Alfred Tarski. Introduction to Logic: and to the Methodology of Deductive Sciences

4) Richard E. Hodel. An Introduction to Mathematical Logic, 1995

5) Stephen Cole Kleene. Mathematical Logic, 1967

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr inż. Jacek Tkacz (ostatnia modyfikacja: 30-10-2019 11:59)

Wygenerowano automatycznie z systemu SylabUZ