Computer networks - course description

General information Course name Computer networks Course ID 11.3-WE-INFP-ComNet Faculty Faculty of Computer Science, Electrical Engineering and Automatics. Field of study Computer Science Education profile academic Level of studies First-cycle Erasmus programme Beginning semester winter term 2019/2020

Course information

3
6
obligatory
english
dr hab. inż. Marcin Mrugalski, prof. UZ

Classes forms

The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time)	Form of assignment
Lecture	30	2	-	-	Exam
Laboratory	30	2	-	-	Credit with grade

Aim of the course

Student is able: configurate switches and routers, describe distance vector and link state routing protocols, chose appropriate interior and exterior gateway routing protocols, manage IP addresses and apply NAT and PAT mechanisms.

Student has knowledge about sources of hazards in security of computer networks and is able to prevent them with the application of the ALC, Firewalls, IPS, IDS and DMZ. Student is able to describe, chose and apply different WAN technologies.

Prerequisites

Computer networks I

Scope

IP address management: Sub-netting with the application of VLSM. IP addresses aggregation. Private addressing with NAT and PAT implementation.

Routers: Architecture, application and advanced configuration. Static and dynamic routing. Default routing. Full-class and classless routing. Link state and distance vector routing protocols: RIPv1, RIPv2, IGRP, OSPF, EIGRP. Interior and exterior gateway routing protocols. Network convergence: split horizon, count to infinity, hold-down timers and route poisoning methods. Load balancing in computer networks.

Network security: Standard and extended access control list configuration. Dynamic access control list. Reflexive access control list. Context-base access control list. Firewalls, IPS, IDS and DMZ.

Ethernet switches: architecture, futures and configuration of the switches in the hierarchical computer networks. VLANs and their configuration. STP, RSTP and Rapid PVST+ algorithms. VLANs internetworks routing.

WAN technologies: ISDN, xDSL, ATM, FrameRelay, SONET, UMTS, MPLS, Metroethernet.

Introduction to routers: Router components and operation. User interface and configuration principle. Troubleshooting.

Teaching methods

Lecture, laboratory exercises

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Can use NAT and PAT translation techniques		• a test	 Lecture
			 Laboratory
Can characterize and point out the differences between static and dynamic routing.		• a test	• Lecture
Is aware of potential risk affecting computer network safety and is able to prevent them by application of various safety techniques e.g., ACL.		• a test	• Lecture
Can creatively develop the division of IP address space into subnets using VLSM technique.		• a test	• Laboratory

Outcome description	Outcome symbols	Methods of verification	The class form
Knows the structure and can carry out an advanced configuration process of routers and		• a test	Lecture
switches.			
Can choose the proper routing protocol necessary for the optimal functioning of the routing		• a test	• Lecture
inside and between autonomous systems.			
Can characterize routing protocols operating according to a distance vector and link state.		• a test	• Lecture
Can implement class and classless routing in computer networks		• a test	• Laboratory
our implement duos and duosicos routing in computer networks.		<i>a</i> 1031	Laboratory

Assignment conditions

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Recommended reading

1. Graziani R., Johnson A.: CCNA2 Routing Protocols and Concepts: CCNA Exploration Companion Guide, Cisco Networking Academy, Indianapolis, Indiana, 2012.

2. Lewis W.: LAN Switching and Wireless: CCNA Exploration Companion Guide, Cisco Networking Academy, Indianapolis, Indiana, 2012.

3. Vachon B., Graziani R.: Accessing the WAN: CCNA Exploration Companion Guide CCNA Exploration Companion Guide, Cisco Networking Academy, Indianapolis, Indiana, 2012.

Further reading

Notes

Modified by dr hab. inż. Marcin Mrugalski, prof. UZ (last modification: 28-10-2019 22:41)

Generated automatically from SylabUZ computer system