SylabUZ

Wygeneruj PDF dla tej strony

Digital signal processing - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Digital signal processing
Kod przedmiotu 06.0-WE-ELEKTD-DigSigProc-Er
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Elektrotechnika
Profil ogólnoakademicki
Rodzaj studiów Program Erasmus drugiego stopnia
Semestr rozpoczęcia semestr zimowy 2019/2020
Informacje o przedmiocie
Semestr 2
Liczba punktów ECTS do zdobycia 5
Typ przedmiotu obowiązkowy
Język nauczania angielski
Sylabus opracował
  • dr inż. Mirosław Kozioł
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 - - Egzamin
Laboratorium 30 2 - - Zaliczenie na ocenę

Cel przedmiotu

  • To familiarize students with basic notions of the digital signal processing.
  • To provide basic knowledge about fundamentals of a spectral analysis and digital filtration of discrete signals.
  • To give skills in practical implementation of a spectral analysis and filtration of discrete signals.
  • To provide knowledge about design of digital filters.

Wymagania wstępne

By entering this course, student should know the following isssues:

  • fundamentals of mathematical analysis (function, derivative, differential, integral, complex numbers),
  • fundamentals of programing in the C language.

Zakres tematyczny

Fundamentals of signal theory. Notion of signal. Classifications of signals. Mathematical models of selected signals. Fourier series and Fourier transform for continuous time signals. Fourier series and Fourier transform properties. An influence of a signal observation in finite time interval on its spectrum.

Analog-to-digital and digital-to-analog conversion. Chain of signal processing during analog-to-digital and digital-to-analog conversion. Sampling, quantization and coding. Quantization error. Spectrum of a sampled signal. Aliasing. Sampling theorem. Anti-aliasing filter. Recovery of an analog signal from samples.

Discrete Fourier transform (DFT). Derivation of amplitude and phase spectrum. Leakage. Parametric and non-parametric spectral windows. Spectrum resolution improvement by zero padding. Examples of spectral analysis of discrete-time signals and their interpretation.

Fast Fourier transform (FFT). Butterfly computation schema in radix-2 FFT algorithm. Computational profit. Computation of the inverse DFT using FFT.

Linear and causal time-invariant (LTI) systems. Definitions of a discrete, linear and time-invariant system. Convolution. Stability of LTI systems in BIBO sense. Definition of causal system. Difference equation.

Z-transform. The Z-transform definition. Region of convergence for the Z-transform. The inverse Z-transform and methods of its determination. Z-transform properties. The transfer function. Poles and zeros of the transfer function. Pole locus and stability of a system.

Digital filters. Finite and infinite impulse response filters. Processing discrete-time signals by digital filters. Basic structures of digital filters. Determination and interpretation of the frequency response of digital filters. Significance of linear phase response in the processing of signal. Group delay.

IIR digital filter design by bilinear transformation method. FIR digital filter design by the method based on the windowed Fourier series.

Metody kształcenia

  • Lecture: conventional/traditional lecture with elements of discussion.
  • Laboratory: laboratory exercises, work in groups with elements of discussion.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

  • Lecture: to receive a final passing grade student has to receive positive grade from written tests conducted at least once a semester.
  • Laboratory: to receive a final passing grade student has to receive positive grades in all laboratory exercises provided for in the laboratory syllabus.

Calculation of the final grade = lecture 45% + laboratory 55%

Literatura podstawowa

  1. Lyons R.G.: Understanding Digital Signal Processing, Prentice Hall, 2004
  2. Mitra S.: Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, 2005
  3. Orfanidis S.J.: Introduction to Signal Processing, Prentice Hall, 1999
  4. Oppenheim A.V., Schafer R.W., Buck J.R.: Discrete-Time Signal Processing, Prentice Hall, 1999

Literatura uzupełniająca

  1. Oppenheim A.V., Willsky A.S., Nawab H.: Signals & Systems, Prentice Hall, 1997
  2. Owen M.: Practical signal processing, Cambridge University Press, 2007
  3. Smith S.W.: Digital Signal Processing: A Practical Guide for Engineers and Scientists, Newnes, 2002

Uwagi


Zmodyfikowane przez dr inż. Mirosław Kozioł (ostatnia modyfikacja: 04-11-2019 08:04)