Numerical methods - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Numerical methods
Kod przedmiotu	11.9-WE-AutP-NM-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2019/2020

Informacje o przedmiocieSemestr2Liczba punktów ECTS do zdobycia4Typ przedmiotuobowiązkowyJęzyk nauczaniaangielskiSylabus opracował• prof. dr hab. inż. Andrzej Obuchowicz

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na
Laboratorium	30	2	-	-	Zaliczenie na ocene

Cel przedmiotu

- to familiarize students with the basic numerical methods used in engineering calculations
- forming understanding among students that it is necessary to correctly perform computer calculations that guarantee acceptable errors
- shaping basic skills of a practical application of numerical methods in computer calculations using the Matlab package

Wymagania wstępne

Mathematical analysis, Linear algebra with analytical geometry

Zakres tematyczny

Computer arithmetic: fixed and the floating-point representation of numbers, calculation errors in the floating-point arithmetic, stability, and correctness of a numerical algorithm, conditioning of a numerical task).

Solving nonlinear equations: bisection method, falsi rule, secant and tangent methods, multiple zeros, systems of nonlinear equations.

Solving problems of linear algebra: exact methods for solving systems of linear equations: Gauss method, pivoting, triangular distribution, Thomas method, Cholesky-Banachiewicz method; iterative methods: Jordan, Gauss-Seidel, determination of determinants and inverse matrix, spectral problem.

Interpolation: definition and classification of methods, polynomial interpolation: Lagrange interpolation formula, Newton interpolation formula; trigonometric interpolation, interpolation with spline functions, cubic spline.

Approximation: discrete and continuous mean square approximation, triangular families of orthogonal polynomials in approximation.

Quadratures: a complex pattern of rectangles and triangles, Newton-Cotes quadrature, Gaussian quadrature, numerical integration of integrals with improper boundaries, and with singular points inside the integration interval, integration of multidimensional functions.

Ordinary differential equations: Euler method, Rung-Kutta methods. Introduction to boundary problem methods and partial differential equations.

Matlab engineering calculations environment.

Metody kształcenia

Lecture: traditional lecture

Laboratory: lab exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu

Symbole efektów Metody weryfikacji

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Students are able to apply numerical methods in practical computer calculations using the Matlab environment	 test, lab exercise report 	s • Laboratorium
Students are able to use his general engineering and mathematical knowledge in carryin out calculations and estimating the correctness of their result	g • test, lab exercise report	s • Laboratorium
Students are aware of the fact that every computer calculation is accompanied by errors understands their nature and knows how to avoid them	, • test	• Wykład
Students can independently, based on literature, solve a simple problem calculation	• test, lab exercise report	s • Laboratorium
Students can work individually and in a team	• current control in class	• Laboratorium
Students know the basic numerical methods used in solving tasks computational, commonly used in engineering calculations.	• test	• Wykład

Warunki zaliczenia

Wykład - warunkiem zaliczenia jest uzyskanie pozytywnej oceny z kolokwium zaliczeniowego w formie pisemnej

Laboratorium - warunkiem zaliczenia jest uzyskanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych, przewidzianych do realizacji w ramach programu laboratorium

Składowe oceny końcowej = wykład: 50% + laboratorium: 50%

Literatura podstawowa

- 1. Stachurski M.: Metody numeryczne w programie Matlab, Mikom, Warszawa, 2003.
- 2. Zalewski A., Cegieła R.: MATLAB: obliczenia numeryczne i ich zastosowania, Poznań, 2002.
- 3. Fortuna Z., Macukow B., Wąsowski J.: Metody numeryczne, WNT, Warszawa, 1995

Literatura uzupełniająca

- 1. Wanat K.: Algorytmy numeryczne, Helion, Gliwice, 1994
- 2. Bjorck A., Dahlquist G.: Metody numeryczne, PWN, Warszawa, 198

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 29-04-2020 09:21)

Wygenerowano automatycznie z systemu SylabUZ