Continous process control - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Continous process control
Kod przedmiotu	06.9-WE-AutP-ContProcCont-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2019/2020

Informacje o przedmiocieSemestr5Liczba punktów ECTS do zdobycia4Typ przedmiotuobowiązkowyJęzyk nauczaniaangielskiSylabus opracował• dr hab. inż. Wojciech Paszke, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2	-	-	Zaliczenie na
					ocene

Cel przedmiotu

1. To familiarize with the basic techniques of designing continuous process control systems

2. To develop understanding of state-of-the-art control techniques

3. To develop understanding of the techniques of designing the state observer and its applications

Wymagania wstępne

Control Engineering , Signals and Dynamic Systems, , Modelling and Simulation, Linear Algebra with Analytic Geometry

Zakres tematyczny

System analysis. Elementary definitions and properties. System definition. Input-output representation. State-space representation. Elementary variables associated with the system being analysed. General concepts of control. Practical applications.

Continuous-time systems. Properties and computer implementations. Typical realisations of continuous-time systems. Input-output representation. State-space representation. Computer-based implementation of linear and non-linear systems.

Discrete-time systems. Properties and computer implementations. Typical realisations of discrete-time systems. Input-output representation. *State-space representation*. Computer-based implementation of linear and non-linear systems.

Analysis of systems described by state-space equations. Structures of the matrices of linear systems. Stability. Observability. Controllability. Computer-based analysis of the above properties. Practical interpretation of stability, observability and controllability.

Design of control systems with output feedback. Rules for designing control systems described by state-space equations with output feedback. Computer-based design techniques. Practical applications.

Design of control systems described by state-space. Rules for designing control systems described by state-space equations with state-feedback. Computer-based design techniques. Separation principle. Practical applications.

Observers. Luenberger observer. Computer-based design techniques and convergence analysis. Practical implementations.

Metody kształcenia

lecture: classical lecture,

laboratory: laboratory exercises, projects carried out in two-person group.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu

Symbole efektów Metody weryfikacji

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Has elementary knowledge on designing of control systems described by the state space models	bieżąca kontrola na zajęciachsprawdzian	 Laboratorium
To have elementary skills in the implementation of control systems with state and output feedbacks	 bieżąca kontrola na zajęciach egzamin - ustny, opisowy, testowy i inne sprawdzian 	WykładLaboratorium
To have the ability to implement systems in the state space	 bieżąca kontrola na zajęciach egzamin - ustny, opisowy, testowy i inne 	WykładLaboratorium
To know how to implement the system modesl using modern engineering tools	 bieżąca kontrola na zajęciach 	• Laboratorium
To understand the need for a mathematical description of the system in the form of state space equations	 egzamin - ustny, opisowy, testowy i inne 	• Wykład

Warunki zaliczenia

Literatura podstawowa

- 1. Dorf, R. i Bishop, R. (2011). Modern Control Systems, Prentice Hall, New Jersey.
- 2. Astrom, S. i Murray, R. (2010). Feedback systems: An introduction for scientists and engineers, Princeton University Press, Princeton and Oxford.
- 3. Nise, N. (2011). Control Systems Engineering, Wiley, New Jersey

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 29-04-2020 08:01)

Wygenerowano automatycznie z systemu SylabUZ