
Object-oriented design and programming - course description
General information
Course name Object-oriented design and programming
Course ID 11.3-WE-BizElP-PiProgrObiek-Er 
Faculty Faculty of Computer Science, Electrical Engineering and Automatics 
Field of study E-business 
Education profile practical
Level of studies First-cycle Erasmus programme
Beginning semester winter term 2019/2020

Course information
Semester 2
ECTS credits to win 5 
Course type obligatory
Teaching language english
Author of syllabus dr inż. Tomasz Gratkowski

dr inż. Jacek Tkacz

Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Credit with grade
Laboratory 30 2 - - Credit with grade

Aim of the course
Presentation of the basic concepts related to object-oriented programming and design and their implementation in the Java environment. Knowledge of modern programming 
environments supporting software development on the Java platform.

Prerequisites
Fundamentals of computer science

Scope
Compiling and running programs on the Java platform. Overview of the Java Development Kit environment and IDE development environments for the Java platform.

Imperative and structured programming in Java. Data types, simple and reference variables, literals, operators, arrays, control instructions, variable visibility range, functions, 
variable properties.

Basics of object-oriented programming in Java. Classes and instances, enumerated types, packages, class and method properties. Rules for the construction of objects and 
learning the mechanism of cleaning the memory (garbage collector).

The object-oriented programming principle. Inheritance, polymorphism and encapsulation. Designing complex object types using composition and inheritance.

Advanced object-oriented techniques. Creating programming interfaces using abstract classes and interfaces. Extending interfaces. Internal classes and statically nested 
classes.

Support for development tools on the Java platform. Creating API documentation in the Java environment. Archiving Java programs and libraries. Debugger support. Basics of 
creating fault tolerant programs. Data validation methods, handling exceptional situations.

Selected Java implementation issues. Utility classes, stream classes for operating the input and output system, storing objects in collections, creating a graphical user interface.

Teaching methods
Lecture - conventional lecture using a video projector.

Laboratory - practical classes in the computer laboratory.

Learning outcomes and methods of theirs verification
Outcome description Outcome symbols Methods of verification The class form
The student knows the principles of object-oriented design and programming a pass - oral, descriptive, test and 

other 
Lecture

The student has knowledge about the process of software development 
based on Java technology,

a pass - oral, descriptive, test and 
other 

Lecture

https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/


Outcome description Outcome symbols Methods of verification The class form
The student is able to compile and run a self-written application in Java a pass - oral, descriptive, test and 

other 
an ongoing monitoring during classes

Laboratory

The student knows the definitions of basic programming paradigms a pass - oral, descriptive, test and 
other 

Lecture

The student is able to create and implement application, with the necessary 
documentation (API, implementation)

a pass - oral, descriptive, test and 
other 
an ongoing monitoring during classes

Laboratory

Assignment conditions
Lecture - writing and/or oral test, carried out at the end of the semester

Laboratory - the final grade is the weighted sum of the marks obtained for the implementation of individual laboratory exercises and control tests verifying the substantive 
preparation for the exercises.

Final grade = 50% of the grade in the form of classes lecture + 50% of the grade in the form of laboratory classes.

Recommended reading
1. Sierra K., Bates B.: Head First Java, 2nd Edition, O'Reilly Media; (February 22, 2005)
2. Horstmann, C.S., Cornell, G., Core Java Volume I--Fundamentals (11th Edition), Prentice Hall; (August 27, 2018)
3. Horstmann, C.S., Cornell, G., Core Java, Volume II--Advanced Features (11th Edition), Prentice Hall; (May 5, 2019)
4. Wróblewski, M.: Algorytmy, struktury danych i techniki programowania. Wydanie V, Helion, 2015
5.  Cormen T. H., Leiserson C. E., Rivest R. L, Stein C., Introduction to Algorithms, 3rd Edition, The MIT Press; (July 31, 2009)

Further reading
1. Martin, R.C.: The Clean Coder: A Code of Conduct for Professional Programmers 1st Edition, Prentice Hall; (May 23, 2011)
2. Eckel, B., Thinking in Java, Wydanie IV, Warszawa, Helion, 2006
3. Lis, M., Praktyczny kurs Java, Wydanie II, Gliwice, Helion, 2004
4. Coldwind G., Zrozumieć programowanie, Wydawnictwo Naukowe PWN, 2018

Notes

Modified by dr inż. Tomasz Gratkowski (last modification: 09-12-2019 15:31)

Generated automatically from SylabUZ computer system


