SylabUZ

Wygeneruj PDF dla tej strony

Cyfrowe przetwarzanie sygnałów - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Cyfrowe przetwarzanie sygnałów
Kod przedmiotu 11.9-WI-INFD-CPS
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Informatyka
Profil ogólnoakademicki
Rodzaj studiów drugiego stopnia z tyt. magistra inżyniera
Semestr rozpoczęcia semestr zimowy 2020/2021
Informacje o przedmiocie
Semestr 2
Liczba punktów ECTS do zdobycia 5
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • dr inż. Mirosław Kozioł
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 18 1,2 Egzamin
Laboratorium 30 2 18 1,2 Zaliczenie na ocenę

Cel przedmiotu

  • Zapoznanie studentów z podstawowymi pojęciami z zakresu cyfrowego przetwarzania sygnałów.
  • Zapoznanie studentów z podstawami analizy widmowej i filtracji cyfrowej sygnałów dyskretnych.
  • Zapoznanie studentów z formalnym opisem układów dyskretnych.
  • Ukształtowanie umiejętności w zakresie implementacji analizy widmowej i filtracji cyfrowej sygnałów dyskretnych w postaci programu komputerowego.

Wymagania wstępne

Analiza matematyczna, Podstawy programowania

Zakres tematyczny

Podstawy teorii sygnałów. Pojęcie sygnału. Klasyfikacja sygnałów. Modele matematyczne wybranych sygnałów. Szereg Fouriera (SF) i przekształcenie Fouriera (PF) dla czasu ciągłego. Własności SF i PF. Wpływ skończonego czasu obserwacji sygnału na jego widmo.

Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe. Tor przetwarzania analogowo-cyfrowego i cyfrowo-analogowego. Próbkowanie, kwantowanie i kodowanie. Błąd kwantowania. Widmo sygnału dyskretnego. Aliasing. Twierdzenie o próbkowaniu. Odtwarzanie sygnału ciągłego z próbek.

Dyskretne przekształcenie Fouriera (DPF). Wyznaczanie widma amplitudowego i fazowego na podstawie wyników DPF. Przeciek widma. Funkcje okien nieparametrycznych i parametrycznych. Poprawa rozdzielczości widma przez uzupełnianie zerami. Przykłady analizy widmowej sygnałów dyskretnych i ich interpretacja.

Algorytm FFT. Omówienie motylkowego schematu obliczeń stosowanego w algorytmie FFT o podstawie 2. Zysk obliczeniowy. Wyznaczanie odwrotnego DPF z wykorzystaniem algorytmu FFT.

Liniowe i przyczynowe dyskretne układy stacjonarne. Definicje układu: dyskretnego, liniowego i stacjonarnego. Operacja splotu w dziedzinie sygnałów dyskretnych. Stabilność układów dyskretnych w sensie BIBO. Definicja układu przyczynowego. Równanie różnicowe.

Przekształcenie Z. Definicja przekształcenia Z. Obszar zbieżności transformaty. Odwrotne przekształcenie Z i metody jego wyznaczania. Własności przekształcenia Z. Transmitancja układu. Bieguny i zera transmitancji. Rozkład biegunów a stabilność układu.

Filtry cyfrowe. Podział filtrów cyfrowych na filtry o skończonej i nieskończonej odpowiedzi impulsowe j (SOI i NOI). Przetwarzanie sygnałów przez filtry. Podstawowe struktury filtrów. Wyznaczanie i interpretacja charakterystyk częstotliwościowych filtrów. Znaczenie liniowej charakterystyki fazowej w procesie przetwarzania sygnału. Charakterystyka opóźnienia grupowego.

Projektowanie filtrów. Projektowanie filtrów NOI metodą transformacji biliniowej. Projektowanie filtrów SOI metodą okien czasowych.

Metody kształcenia

Wykład: wykład konwencjonalny/tradycyjny z elementami dyskusji.

Laboratorium: ćwiczenia laboratoryjne, praca w grupach z elementami dyskusji.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Wykład: warunkiem zaliczenia jest uzyskanie pozytywnych ocen z egzaminu przeprowadzonego w formie zaproponowanej przez prowadzącego.

Laboratorium: warunkiem zaliczenia jest uzyskanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych przewidzianych do realizacji w ramach programu laboratorium oraz sprawdzianów przeprowadzanych przez prowadzącego zajęcia.

Składowe oceny końcowej = wykład: 45% + laboratorium: 55%

Literatura podstawowa

  1. Lyons R.G.: Wprowadzenie do cyfrowego przetwarzania sygnałów. WKŁ, Warszawa, 1999.
  2. Smith S.W.: Cyfrowe przetwarzanie sygnałów. Praktyczny poradnik dla inżynierów i naukowców. Wydawnictwo BTC, Warszawa, 2007.
  3. Szabatin J.: Podstawy teorii sygnałów. WKŁ, Warszawa, 2003.
  4. Zieliński T.P.: Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań. WKŁ, Warszawa, 2005.

Literatura uzupełniająca

  1. Owen M.: Przetwarzanie sygnałów w praktyce. WKŁ, Warszawa, 2009.
  2. Wojciechowski J.M.: Sygnały i systemy. WKŁ, Warszawa, 2008.

Uwagi


Zmodyfikowane przez dr inż. Mirosław Kozioł (ostatnia modyfikacja: 23-04-2020 13:42)