Intelligent control methods - opis przedmiotu

•	
Informacje ogólne	
Nazwa przedmiotu	Intelligent control methods
Kod przedmiotu	11.9-WE-AutD-IntelConMethEr
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacje o przedmiocie

Semestr	2
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. inż. Marcin Witczak

Formy zajęć

i onny zajęo						
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia	
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)		
Wykład	30	2	-	-	Egzamin	
Laboratorium	30	2	-	-	Zaliczenie na	
					ocene	

Cel przedmiotu

Introduction to artificial neural networks and fuzzy logic.

Shaping skills in design fuzzy and neural network-based control systems

Wymagania wstępne

Control theory

Zakres tematyczny

Introduction to neural networks: properties, essential topologies and connections, learning methods, application perspectives in control engineering and robotics.

Multilayer feedforward networks: design of an essential processing unit. Network structures and working rules, backpropagation algorithm and its modifications, knowledge generalization, regularization. Neural networks in classification tasks. Dynamic neural networks: feedforward networks with delay, recurrent networks (Williams-Zipser network), partially recurrent network (Elman network). Serial and parallel models in system identification. Essential control structures using neural networks.

Introduction to fuzzy logic: fuzzy sets, fuzzification and defazification. Rule base and its generation. Fuzzy inference models: Mamdani and Takagi-Sugeno. Design of Takagi-Sugeno models. Design of fuzzy PID. State feedback controller with Takagi-Sugeno models.

Metody kształcenia

Lecture: conventional lecture Lab: laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can design modern control systems with neural networks and fuzzy logic		 sprawdzian 	• Laboratorium
Understands the dynamical development of the field		• egzamin - ustny, opisowy, testowy i inne	• Wykład
Understands the rules governing neural networks and fuzzy logic. Understands that they should be applied in cases when classical methods do not provide expected results.		 egzamin - ustny, opisowy, testowy i inne 	• Wykład

Lecture - positive score of a written exam Lab – positive scores concerning all laboratory tasks Final score composition = Lecture: 50% + Lab: 50%

Literatura podstawowa

- 1. Korbicz, A. Obuchowicz, D. Uciński D., Sieci neuronowe. Podstawy i zastosowania, Akademicka Oficyna Wydawnicza, PLJ, Warszawa, 1994
- 2. R. Rojek, K. Bartecki, J. Korniak, Zastosowanie sztucznych sieci neuronowych i logiki rozmytej w automatyce, Oficyna Wydawnicza Politechniki Opolskiej, Opole, 2000
- 3. R.R. Yager, D.P. Filev, Podstawy modelowania i sterowania rozmytego, WNT, Warszawa, 1995
- 4. M. Noorgard, O. Ravn, N.M. Poulsen, L.K. Hansen, Neural networks for Modelling and Control of Dynamic Systems, Springer-Verlag, Londyn, 2000

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez prof. dr hab. inż. Marcin Witczak (ostatnia modyfikacja: 29-04-2020 13:35)

Wygenerowano automatycznie z systemu SylabUZ