# Intelligent control methods - course description

| General information |                                                                    |
|---------------------|--------------------------------------------------------------------|
| Course name         | Intelligent control methods                                        |
| Course ID           | 11.9-WE-AutD-IntelConMethEr                                        |
| Faculty             | Faculty of Computer Science, Electrical Engineering and Automatics |
| Field of study      | Automatic Control and Robotics / Computer Control Systems          |
| Education profile   | academic                                                           |
| Level of studies    | Second-cycle Erasmus programme                                     |
| Beginning semester  | winter term 2020/2021                                              |

| Course information  |                                     |
|---------------------|-------------------------------------|
| Semester            | 2                                   |
| ECTS credits to win | 5                                   |
| Course type         | obligatory                          |
| Teaching language   | english                             |
| Author of syllabus  | • prof. dr hab. inż. Marcin Witczak |

| Classes forms  |                                |                           |                                  |                           |                      |
|----------------|--------------------------------|---------------------------|----------------------------------|---------------------------|----------------------|
| The class form | Hours per semester (full-time) | Hours per week (full-time | ) Hours per semester (part-time) | Hours per week (part-time | ) Form of assignment |
| Lecture        | 30                             | 2                         |                                  | -                         | Exam                 |
| Laboratory     | 30                             | 2                         | -                                | -                         | Credit with grade    |

#### Aim of the course

Introduction to artificial neural networks and fuzzy logic.

Shaping skills in design fuzzy and neural network-based control systems

## **Prerequisites**

Control theory

#### Scope

Introduction to neural networks: properties, essential topologies and connections, learning methods, application perspectives in control engineering and robotics.

Multilayer feedforward networks: design of an essential processing unit. Network structures and working rules, backpropagation algorithm and its modifications, knowledge generalization, regularization. Neural networks in classification tasks. Dynamic neural networks: feedforward networks with delay, recurrent networks (Williams-Zipser network), partially recurrent network (Elman network). Serial and parallel models in system identification. Essential control structures using neural networks.

Introduction to fuzzy logic: fuzzy sets, fuzzification and defazification. Rule base and its generation. Fuzzy inference models: Mamdani and Takagi-Sugeno. Design of Takagi-Sugeno models. Design of fuzzy PID. State feedback controller with Takagi-Sugeno models.

## Teaching methods

Lecture: conventional lecture Lab: laboratory exercises

#### Learning outcomes and methods of theirs verification

| Outcome description                                                                                                                                                       | Outcome<br>symbols | Methods of verification                                             | The class form                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|--------------------------------|
| Can design modern control systems with neural networks and fuzzy logic                                                                                                    |                    | • a quiz                                                            | <ul> <li>Laboratory</li> </ul> |
| Understands the dynamical development of the field                                                                                                                        |                    | <ul> <li>an exam - oral, descriptive, test<br/>and other</li> </ul> | • Lecture                      |
| Understands the rules governing neural networks and fuzzy logic. Understands that they should be applied in cases when classical methods do not provide expected results. |                    | <ul> <li>an exam - oral, descriptive, test<br/>and other</li> </ul> | • Lecture                      |

## Assignment conditions

Lecture - positive score of a written exam

Lab – positive scores concerning all laboratory tasks

Final score composition = Lecture: 50% + Lab: 50%

## Recommended reading

- 1. Korbicz, A. Obuchowicz, D. Uciński D., Sieci neuronowe. Podstawy i zastosowania, Akademicka Oficyna Wydawnicza, PLJ, Warszawa, 1994
- 2. R. Rojek, K. Bartecki, J. Korniak, Zastosowanie sztucznych sieci neuronowych i logiki rozmytej w automatyce, Oficyna Wydawnicza Politechniki Opolskiej, Opole, 2000
- 3. R.R. Yager, D.P. Filev, Podstawy modelowania i sterowania rozmytego, WNT, Warszawa, 1995
- 4. M. Noorgard, O. Ravn, N.M. Poulsen, L.K. Hansen, Neural networks for Modelling and Control of Dynamic Systems, Springer-Verlag, Londyn, 2000

# Further reading

**Notes** 

Modified by prof. dr hab. inż. Marcin Witczak (last modification: 29-04-2020 13:35)

Generated automatically from SylabUZ computer system