Industrial drives and electric vehicles - opis przedmiotu

		71	
Information	חם פור	anine	
mornad		gonic	

Informacje ogólne	
Nazwa przedmiotu	Industrial drives and electric vehicles
Kod przedmiotu	06.2-WE-AutD-IDaEV-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacie o przedmiocie

Semestr	2
Liczba punktów ECTS do zdobycia	2
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Marcin Jarnut, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1		-	Zaliczenie na ocenę
Laboratorium	15	1			Zaliczenie na ocenę

Cel przedmiotu

To familiarize students with modern power electronics drives used in typical industrial applications and electrical vehicles,

Shaping basic skills in the selection of drives type and parameters for industrial application and for electrical vehicles.

Wymagania wstępne

Sensorics and industrial measurements, Automation of industrial processes

Zakres tematyczny

Construction and control of drives used in industrial equipment and motor vehicles. DC drives: commutator with electromagnetic excitation, commutator with permanent magnet excitation. Three-phase AC drives: asynchronous squirrel-cage, synchronous with trapezoidal shape of the electromotive force (so-called BrushLess DC brushless motors), synchronous with the sinusoidal shape of the electromotive force (Permanet Magnet Synchronous Motor), switching reluctance synchronous (Switching Reluctance Motor).

Pneumatic and hydraulic drives. Construction and operation of basic pneumatic elements. Examples of typical pneumatic drives. Basics of hydraulic drives. Hydraulic servomechanisms.

The specificity of industrial equipment drives. Mechanical characteristics of working machines and selection of drives: machine tools, cranes, mobile machines, forming devices, winding machines, cam machines, etc. Monitoring systems controlling drive systems.

Electromechanical systems of vehicles. Electric drives of vehicles. Hybrid propulsion systems. Structure of the transmission systems. Electric steering. Electrohydraulic and electromechanical brakes. Fuel cells. Properties and distribution of batteries (mechanical, electrochemical, hydroaccumulators, ultracapacitors). Electric vehicle charging concepts.

Metody kształcenia

Lecture: problem lecture, conventional lecture

Laboratory: practical classes, laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
He can choose the right parameters of converter drives to increase their energy efficiency.		kolokwiumodpowiedź ustna	WykładLaboratorium
Is able to classify electric drives and select the appropriate drive system for the specific requirements of industrial equipment and electrical vehicles.		 bieżąca kontrola na zajęciach kolokwium 	• Wykład

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Is able to use the basic characteristics of electrical machines and mechanical characteristics of working machines in the selection of drives for industrial devices and electrical vehicles.		 bieżąca kontrola na zajęciach kolokwium 	WykładLaboratorium
Is aware of the importance of electric drives for the development of technology.		kolokwiumodpowiedź ustna	• Wykład

Warunki zaliczenia

Lecture - the condition of passing is obtaining positive grades from written or oral tests carried out at least once in a semester.

Laboratory - the condition of passing is obtaining positive grades from all laboratory exercises, planned to be implemented under the laboratory program.

Components of the final grade = lecture: 60% + laboratory: 40%

Literatura podstawowa

- 1. Boldea, S.A. Nasar, Electric Drives, CRC Press, 1999.
- 2. Ronkowski M., Maszyny elektryczne wokół nas, WPG 2011, http://pbc.gda.pl/Content/16401/659-Ronkowski.pdf.
- 3. H. Tunia, M. P. Kaźmierkowski, Automatyka napędu przekształtnikowego, PWN, 1987.
- 4. T. Orłowska-Kowalska, Bezczujnikowe układy napędowe z silnikami indukcyjnymi, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2003.
- 5. M. P. Kaźmierkowski, F. Blaabjerg, R. Krishnan, Control in Power Electronics, Selected Problems, Elsevier, 2002. 5. Z. Grunwald, Napęd elektryczny, WNT, 1987.

Literatura uzupełniająca

- 1. T. R. Crompton, Battery Reference Book, Newnes, Oxford, 2003.
- 2. Szejnach W., Napęd i sterowanie pneumatyczne, WNT 2005.

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 04-05-2020 14:36)

Wygenerowano automatycznie z systemu SylabUZ