SylabUZ

Wygeneruj PDF dla tej strony

Control engineering - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Control engineering
Kod przedmiotu 06.9-WE-AutP-ContrEng-Er
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Automatyka i robotyka
Profil ogólnoakademicki
Rodzaj studiów Program Erasmus pierwszego stopnia
Semestr rozpoczęcia semestr zimowy 2020/2021
Informacje o przedmiocie
Semestr 4
Liczba punktów ECTS do zdobycia 6
Typ przedmiotu obowiązkowy
Język nauczania angielski
Sylabus opracował
  • dr hab. inż. Wojciech Paszke, prof. UZ
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 - - Egzamin
Laboratorium 30 2 - - Zaliczenie na ocenę

Cel przedmiotu

Skills and competencies needed to model, analyze and design of linear dynamical systems with time and frequency domain methods.

Wymagania wstępne

Mathematical analysis, Mathematical foundations of engineering, Modeling and simulation. Signals and dynamic systems.

Zakres tematyczny

Control of continuous systems: Feedback control: performance indexes, disturbance Rejection and sensitivity, steady-state error, response of closed-loop system.

Introduction to modeling of simple electrical and mechanical systems in time frequency domains. State-space representation. Converting a Transfer Function to State Space and vice versa.

Block Diagrams of feedback systems. Signal-flow graphs. Mason’s rule. Signal-flow graphs of state equations.

Time response. Poles,  zeros, and system response. Analysis of first order systems. Basic performance indexes. The second order system. System response with additional poles. System response with zeros. Time domain solution of state equations.

Root locus method: Root locus of  basic feedback systems. Guidelines for sketching a root locus, controller parameters selection based on a root locus. Controller synthesis with dynamic compensation method (lead and lag compensation), parameters selection for lead and lag compensators. Application of the root locus method for nonlinear systems and systems with delays.

Frequency response method: Frequency response: mathematical foundations, determination of bandwidth. Bode plot techniques: drawing plots for systems with real and complex poles, non-minimal phase systems. Steady-state error. The Nyquist stability criterion: Nyquist plots, applications of the Nyquist stability criterion for controller design, stability margins (phase and gain margins). Relation between closed-loop transient and closed-loop frequency responses. Relation between closed- and open-loop frequency responses.  Relation between closed-loop transient and open-loop frequency responses. Steady-state error characteristics from frequency response.

Designing Lead and Lag Compensators. Transient Response via Gain Adjustment. Lag and Lead Compensators. Lead-lag compensator design  using either root locus or frequency response

Classical Three-term (PID) controller: Basic features, PID controller tuning with analytical and Ziegler-Nichols methods. Robustness analysis: disturbances and uncertainty. Digital implementation of continuous controllers.

Metody kształcenia

lecture: classical lecture,

laboratory: laboratory exercises, projects carried out in two-person group.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Lecture – obtaining a positive grade in written or oral exam.

Laboratory – the main condition to get a pass is scoring sufficient marks for all laboratory exercises.

Literatura podstawowa

1.      Nise N.S.: Control Systems Engineering, 6th Edition International Student Version, John Wiley & Sons, Inc. , 2011.

2.      Golnaraghi F., Kuo B.: Automatic Control Systems, 9th Edition, John Wiley & Sons, Inc., 2010.

3.      Franklin G.E, Powell J.D. Emami-Naeini A.: Feedback Control of Dynamics Systems. Addison-Wesley, Upper Saddle River, New Jersey, 2002

4.      Dorf, J.C., Bishop R.: Modern Control Systems, Prentice-Hall, 2002

Literatura uzupełniająca

1.     K.J. Åström, R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, Princeton, 2009.

Uwagi


Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 28-04-2020 10:20)