Control systems of energy transmission and distribution - course description

General information	
Course name	Control systems of energy transmission and distribution
Course ID	06.2-WE-ELEKTD-CSofETD-EiE
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	Electrical Engineering
Education profile	academic
Level of studies	Second-cycle Erasmus programme
Beginning semester	winter term 2020/2021

Course information		
Semester	3	
ECTS credits to win	4	
Course type	obligatory	
Teaching language	english	
Author of syllabus	• dr hab. inż. Marcin Jarnut, prof. UZ	

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time) Form of assignment			
Lecture	30	2		-	Credit with grade			
Laboratory	30	2		-	Credit with grade			

Aim of the course

To provide fundamental knowledge in subject of systems for energy transmission and distribution control.

Prerequisites

None.

Scope

Distributed generation. Power quality in distributed electrical power system. Limitations of the transmission and distributed power lines.

Control of the parameters of the electrical power system. Series, parallel and series-parallel compensation. Power electronics arrangements for compensation.

Electrical power system - stability. Transient and dynamic stability. Methods of improvement of the stability margin. Influence of the series, parallel and series-parallel compensation on transient and dynamic stability.

Conventional FACTS. Influence of the above mentioned on system stability.

FACTS and dFACTS on the base of synchronous sources. Influence of the above mentioned on system stability.

Energy storage arrangements. Batteries. Super-capacitors. Compressed air. Fly wheels. Fuel cells. SMES. FACTS and dFACTS with energy storage – influence on voltage conditions and stability.

UPS arrangements. UPS Standby. UPS Line-interactive. Delta conversion UPS.

Power electronics arrangements for power quality improvement. Series and parallel active filters. Hybrid filters. Series-parallel arrangements for power quality improvement – UPQC.

Teaching methods

Lecture, laboratory exercises.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Knows theoretical fundamentals of FACTS, dFACTS and UPS systems operation		an evaluation test	• Lecture
Can examine the properties of FACTS, dFACTS and UPS systems		an ongoing monitoring during classescarrying out laboratory reports	 Laboratory
Knows serial and concurrent compensation.		• an evaluation test	• Lecture
Knows functionality limitation mechanisms of power grids		• an evaluation test	• Lecture
Can indicate the system eliminating the specific constraints of transmission networks		an ongoing monitoring during classescarrying out laboratory reports	 Laboratory

Assignment conditions

Lecture - the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Laboratory - the main condition to get a pass is acquiring sufficient marks for all laboratory exercises as scheduled.

Recommended reading

- 1. Strzelecki R., Supronowicz H.: Power factor in alternating currents systems and improvement methods, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2000. (in Polish)
- 2. Hingorani N., Gyugyi L.: Understanding FACTS. Concepts and technology of flexible AC transmission systems, IEEE Press, New York, 2000.
- 3. Song Y., Johns A.: Flexible AC transmission systems (FACTS), IEE Power and Energy Series 30, TJ International Ltd, Padstow, Cornwall, 1999.
- 4. Benysek G.: Improvement in the quality of delivery of electrical energy using power electronics systems, Springer-Verlag Ltd, London, 2007.

Further reading

- 1. Arrillaga J., Watson N., Power system harmonics, John Wiley & Sons, 2003
- 2. Machowski J. et all., Power system dynamics and stability, John Wiley & Sons, 1997

Notes

Modified by dr hab. inż. Paweł Szcześniak, prof. UZ (last modification: 25-04-2020 13:39)

Generated automatically from SylabUZ computer system