Medical image analysis algorithms - course description | General information | | |---------------------|---| | Course name | Medical image analysis algorithms | | Course ID | 12.0-WF-FizD-MIAA-S17 | | Faculty | Faculty of Physics and Astronomy | | Field of study | Physics | | Education profile | academic | | Level of studies | Second-cycle studies leading to MS degree | | Beginning semester | winter term 2020/2021 | | Course information | | | |---------------------------|--|--| | Semester | 2 | | | ECTS credits to win | 7 | | | Available in specialities | Medical Physics | | | Course type | obligatory | | | Teaching language | english | | | Author of syllabus | dr hab. Jarosław Piskorski, prof. UZ | | | Classes forms | | | | | | |----------------|--------------------------------|---------------------------|----------------------------------|----------------------------|--------------------| | The class form | Hours per semester (full-time) | Hours per week (full-time |) Hours per semester (part-time) | Hours per week (part-time) | Form of assignment | | Lecture | 30 | 2 | - | - | Exam | | Laboratory | 30 | 2 | - | - | Credit with grade | ### Aim of the course The aim of the course is to become familiar with basic image analysis algorithms as well as gaining practical skills in medical image analysis. ### Prerequisites The ability to program with the use of the Python programming language. Basic signal analysis course as well as medical diagnostics and instrumentation course. #### Scope - 1. Medical image physics, instrumentation and acquisition - 2. 2d and 3d image formation, SNR, CNR (signal-to-noise, contrast-to-noise) - 3. Image enhancement algorithms - 4. Image feature detection - 5. Elements of segmentation techniques - 6. Backprojection algorithm and Radon theorem - 7. Classification and clustering algorithms - 8. Image quality and quality validation ### Teaching methods Lectures and laboratory exercises, discussions, independent work with a specialized scientific literature in Polish and English, and work with the technical documentation and search for information on the Internet. ## Learning outcomes and methods of theirs verification | Outcome symbols | Methods of verification | The class form | |----------------------------|--|---| | K2_W02 | • a test | Laboratory | | K2_W03 | an exam - oral, descrip | tive, test | | K2_W05 | and other | | | K2_U05 | | | | K2_U06 | | | | K2_U10 | | | | K2_K03 | | | | | K2_W02 K2_W03 K2_W05 K2_U05 K2_U06 K2_U10 | K2_W02 A test K2_W03 An exam - oral, description and other K2_W05 K2_U05 K2_U06 K2_U10 | | Outcome description | Outcome symbols | Methods of verification | The class form | |--|----------------------------|---|--------------------------------| | The students can name the most important medical image analysis algorithms. | K2_W05 | a discussion | Lecture | | They can apply at least one implementation of such algorithms to a medical | K2_W06 | a test | Laboratory | | image. | K2_U05 | an exam - oral, descriptive, te | st | | | • K2_U06 | and other | | | Students are able to independently learn the details of new algorithms and their | • K2_W01 | a discussion | • Lecture | | numerical implementations. | K2_W03 | a test | Laboratory | | | K2_U07 | an exam - oral, descriptive, te | st | | | K2_U09 | and other | | | | K2_U10 | | | | | K2_U14 | | | | | K2_K01 | | | | | • K2_K02 | | | | Characteristic feature is the expanding awareness of the need to update the | • K2_W04 | a discussion | • Lecture | | technical knowledge on the available techniques and algorithms. | K2_U09 | a test | Laboratory | | | K2_U11 | an exam - oral, descriptive, te | st | | | K2_K01 | and other | | | | K2_K02 | | | | | • K2_K05 | | | | Students expand their ability to acquire knowledge in different ways using a | • K2_W02 | a discussion | Laboratory | | variety of sources | K2_W05 | | | | | K2_U05 | | | | | K2_U07 | | | | | K2_U09 | | | | | K2_U10 | | | | | K2_U14 | | | | | K2_K01 | | | | | K2_K02 | | | | | • K2_K03 | | | | Students understand the structure of a image analysis algorithm and can apply | • K2_W02 | a discussion | Laboratory | | existing solutions to images. | • K2_W05 | | | | | K2_U05 | | | | | K2_U06 | | | | | K2_U07 | | | ## Assignment conditions Lecture: positive evaluation of the test. Laboratory: positive evaluation of the tests, the execution of the project. The final evaluation of the laboratory: evaluation of tests of 60%, the assessment of the project 40%. Before taking the exam the student must be credited with the exercises. Final grade: arithmetic mean of the completion of the lecture and in excerises. ### Recommended reading [1] Klaus D. Toennies, Guide to Medical Image Analysis: Methods and Algorithms (Advances in Computer Vision and Pattern Recognition) 2012th Edition. [2] Atam P. Dhawan, Medical Image Analysis 2nd Edition ### Further reading [1] Kathy McQuillen Martensen, Radiographic Image Analysis, 4e 4th Edition. ### **Notes** Modified by dr hab. Piotr Lubiński, prof. UZ (last modification: 09-06-2020 22:34) Generated automatically from SylabUZ computer system