Computer simulations - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Computer simulations
Kod przedmiotu	13.2-WF-FizD-CS- 17
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Fizyka
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	6
Występuje w specjalnościach	Fizyka teoretyczna
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	 prof. dr hab. Mirosław Dudek

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-		Egzamin
Laboratorium	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

The aim of the course is to gain basic knowledge of computer simulation methods and the ability to choose the appropriate simulation model to the considered problem. Students should acquire skills in implementation of this knowledge by designing the proper algorithms and then interpreting the results of computer simulations.

Wymagania wstępne

Ability to use some programming language.

Zakres tematyczny

- Representation of numbers, excess and underflow errors, truncation error (finite difference method), the stability of numerical algorithms.
- Algorithms for solving the equations of motion: Euler, Verlet, velocity Verlet, numerical solution of the harmonic oscillator.
- Monte Carlo algorithms (random number generators, random variables with different probability distributions, Metropolis algorithm, stochastic equations).
- Selected examples of applications (simulation of phase transitions, relaxation of the electric dipole)

Metody kształcenia

Lectures and laboratory exercises, discussions, independent work with a specialized scientific literature in Polish and English, and work with the technical documentation and search for information on the Internet.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Students have an extended knowledge of classical physics of interacting systems.	• K2_W01	egzamin - ustny, opisowy, testowy i inne	• Laboratorium
They have practical knowledge on modeling using pseudo-random number generator and leterministic methods.	• K2_W02	egzamin - ustny, opisowy, testowy i innetest	WykładLaboratorium
Students know numerical error analysis, numerical methods of solving differential equations they can use molecular dynamics methods, methods of Monte Carlo.	• K2_W05	dyskusjaegzamin - ustny, opisowy, testowy i innetest	WykładLaboratorium

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
They have skills in data analysis, they posses knowledge which is acquired during studies of	• K2_U03	 dyskusja 	 Wykład
the scientific literature.	 K2_U05 	egzamin - ustny,	 Laboratorium
	 K2_U10 	opisowy, testowy i	
		inne	
		• test	
Students expand their ability to acquire knowledge in different ways using a variety of sources.	• K2_U10	• dyskusja	• Laboratorium
Characteristic feature is the expanding awareness of the need to update the technical	• K2_K01	• dyskusja	Wykład
knowledge on the available techniques and simulation results as well as awareness of the	• K2_K05	• egzamin - ustny,	 Laboratorium
mpact of research on the development of computer technology, including in particular		opisowy, testowy i	
nanotechnology.		inne	
		• test	

Warunki zaliczenia

Lecture: positive evaluation of the test.

Laboratory: positive evaluation of the tests, the execution of the project.

The final evaluation of the laboratory: evaluation of tests of 60%, the assessment of the project 40%.

Before taking the exam the student must be credited with the exercises.

Final grade: arithmetic mean of the completion of the lecture and in excersises.

Literatura podstawowa

- [1] J.C. Berendsen and W.F. Van Gunsteren, Practical Algorithms for Dynamic Simulations in Molecular dynamics simulations of statistical mechanical systems, Proceedings of the Enrico Fermi Summer School, p. 43 45, Soc. Italinana de Fisica, Bologna 1985.
- [2] Stephen Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601 644 (1983).
- [3] Tao Pang, An Introduction to Computational Physics, Cambridge University Press (2006).

Literatura uzupełniająca

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical recipes, The art of scientific computing, third edition 2007.

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 09-06-2020 22:42)

Wygenerowano automatycznie z systemu SylabUZ