Astrophysics I - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Astrophysics I
Kod przedmiotu	13.7-WF-FizD-Ast-S19
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Fizyka
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacje o przedmiocie

Semestr	1
Liczba punktów ECTS do zdobycia	6
Występuje w specjalnościach	Astrofizyka komputerowa
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr hab. Wojciech Lewandowski, prof. UZ
Liczba punktów ECTS do zdobycia Występuje w specjalnościach Typ przedmiotu Język nauczania Sylabus opracował	6 Astrofizyka komputerowa obowiązkowy angielski • dr hab. Wojciech Lewandowski, prof. UZ

Formy zajęć

, ,,					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Egzamin
Ćwiczenia	30	2	-	-	Zaliczenie na
					ocene

Cel przedmiotu

An extension of the knowledge about stellar astrophysics, stellar evolution and binary stars evolution, and the final stages of the stellar evolution

Wymagania wstępne

Basic knowledge in the field of astrophysics, namely the structure and evolution of stars. Basic knowledge of celestial mechanics.

Zakres tematyczny

- The strucrure of stars. Basic laws governing the stellar structure.
- Stellar atmospheres.
- The origin of stellar spectra.
- The influence of physical properties of a star on the shape of spectral lines.
- Evolution of stars of various masses.
- Interstellar clouds, proto-stars, circumstellar disks.
- Properities of main sequence stars of various mass and chemical composition.
- Post-main sequence evolution giants and supergiants.
- Horizontal branch and asymptotic branch.

Metody kształcenia

Classic lecture. Computational exercises during class plus a project method – an extended study of a selected topic from the lecture area of interest

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student can name and explain the basic laws governing teh structure of stars, with the particular focus on the	• K2_W01	• egzamin -	 Wykład
hydrostatic equilibrium. Based on his knowledge of physics and astronomy he can describe the structure of	• K2_W03	ustny,	
stars of various masses, point out and explain the reasons behind the differences. Student can explain the		opisowy,	
origin of the stellar spectrum and the influence of various physical properties on the spectral characteristic.		testowy i inne	
Student has extended knowledge of the stellar evolution. He can describe the structure of a star during			
various stages of the evolution, based on the star's and chemical composition. He can explain the process of			
stellar formation. He is able to point out and explain the differences in the evolution of stars of different mass	.		

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student has extended knowledge of the stellar evolution. He can describe the structure of a star during	• K2_U01	 projekt 	 Ćwiczenia
various stages of the evolution, based on the star's and chemical composition. He can explain the process of	• K2_U03	• test	
stellar formation. He is able to point out and explain the differences in the evolution of stars of different	• K2_U05		
mass. Using the acquired theoretical knowledge student can solve simple analytical problems concerning the	• K2_U07		
stellar structure and evolution. He can independently study a chosen topic from the field of stellar evolution	• K2_U11		
using the available literature. He is able to present the results of his research in a written form.	• K2_U12		
	• K2_U13		
	• K2_K01		
	• K2_K03		

Warunki zaliczenia

Lecture: Oral exam, passing condition – positive grade.

Class: Written test – solving computational exercises(passing condition – positive grade), and a positive grade from the written research report. Final grade: a weighted average of the exam grade (70%) and the class grade (30%).

Literatura podstawowa

F. Shu, Galaktyki, gwiazdy, życie, Prószyński i S_ka, 2003.
 M. Kubiak, Gwiazdy i materia międzygwiazdowa, PWN, 1994.

Literatura uzupełniająca

1] J. Mullaney, Double & Multiple Stars and how to observe them, Springer 2005. [2] R. Kippenhann, A. Weigert, Stellar structure and evolution, Springer 1996.

Uwagi

Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 09-06-2020 17:02)

Wygenerowano automatycznie z systemu SylabUZ