Astrophysics I - course description

General information	
Course name	Astrophysics I
Course ID	13.7-WF-FizD-Ast-S19
Faculty	Faculty of Physics and Astronomy
Field of study	Physics
Education profile	academic
Level of studies	Second-cycle studies leading to MS degree
Beginning semester	winter term 2020/2021

Course information		
Semester	1	
ECTS credits to win	6	
Available in specialities	Astrofizyka komputerowa	
Course type	obligatory	
Teaching language	english	
Author of syllabus	 dr hab. Wojciech Lewandowski, prof. UZ 	

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment			
Lecture	15	1	-	-	Exam			
Class	30	2	-	-	Credit with grade			

Aim of the course

An extension of the knowledge about stellar astrophysics, stellar evolution and binary stars evolution, and the final stages of the stellar evolution

Prerequisites

Basic knowledge in the field of astrophysics, namely the structure and evolution of stars. Basic knowledge of celestial mechanics.

Scope

- The strucrure of stars. Basic laws governing the stellar structure.
- Stellar atmospheres.
- The origin of stellar spectra.
- The influence of physical properties of a star on the shape of spectral lines.
- Evolution of stars of various masses.
- Interstellar clouds, proto-stars, circumstellar disks.
- Properities of main sequence stars of various mass and chemical composition.
- Post-main sequence evolution giants and supergiants.
- Horizontal branch and asymptotic branch.

Teaching methods

Classic lecture. Computational exercises during class plus a project method – an extended study of a selected topic from the lecture area of interest

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form • K2_U01 • a project Class Student has extended knowledge of the stellar evolution. He can describe the structure of a star during various stages of the evolution, based on the star's and chemical composition. He can explain the process of K2_U03 a test stellar formation. He is able to point out and explain the differences in the evolution of stars of different K2_U05 mass. Using the acquired theoretical knowledge student can solve simple analytical problems concerning the K2_U07 stellar structure and evolution. He can independently study a chosen topic from the field of stellar evolution K2_U11 using the available literature. He is able to present the results of his research in a written form. K2_U12 K2_U13 K2_K01 K2_K03

Outcome description Outcome symbols Methods of verification The class form

Student can name and explain the basic laws governing teh structure of stars, with the particular focus on the hydrostatic equilibrium. Based on his knowledge of physics and astronomy he can describe the structure of stars of various masses, point out and explain the reasons behind the differences. Student can explain the origin of the stellar spectrum and the influence of various physical properties on the spectral characteristic. Student has extended knowledge of the stellar evolution. He can describe the structure of a star during various stages of the evolution, based on the star's and chemical composition. He can explain the process of stellar formation. He is able to point out and explain the differences in the evolution of stars of different mass.

 an exam - oral, descriptive, test and other

• K2_W01

K2_W03

• Lecture

Assignment conditions

Lecture: Oral exam, passing condition - positive grade.

Class: Written test – solving computational exercises (passing condition – positive grade), and a positive grade from the written research report. Final grade: a weighted average of the exam grade (70%) and the class grade (30%).

Recommended reading

[1] F. Shu, Galaktyki, gwiazdy, życie, Prószyński i S_ka, 2003.

[2] M. Kubiak, Gwiazdy i materia międzygwiazdowa, PWN, 1994.

Further reading

1] J. Mullaney, Double & Multiple Stars and how to observe them, Springer 2005.

[2] R. Kippenhann, A. Weigert, Stellar structure and evolution, Springer 1996.

Notes

Modified by dr hab. Piotr Lubiński, prof. UZ (last modification: 09-06-2020 17:02)

Generated automatically from SylabUZ computer system