Analiza kombinatoryczna - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Analiza kombinatoryczna
Kod przedmiotu	11.1-WK-MATD-AK-W-S14_pNadGenT0E38
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Mathematics
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacje o przedmiocie

Semestr	2
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obieralny
Język nauczania	polski
Sylabus opracował	• dr Magdalena Łysakowska

Formy zaję	ć				
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2		-	Zaliczenie na ocenę
Ćwiczenia	30	2	-	-	Zaliczenie na ocenę

Cel przedmiotu

Introducing students to basic definitions, theorems and methods of combinatorial analysis and examples of applications of them.

Wymagania wstępne

Completed courses of mathematical analysis, linear algebra and discrete mathematics.

Zakres tematyczny

Lecture

- 1. The binomial coefficients (2 h)
- 2. Rook polynomials (2 h)
- 3. Latin squares (2 h)
- 4. Van der Waerden's Theorem, Schur's Theorem (2 h)
- 5. Map-colourings, Four Colour Theorem (3 h)
- 6. Minimax theorems (4 h)
- 7. Combinatorial designs (2 h)
- 8. Perfect codes, Hadamard's matrices (5 h)
- 9. Sperner's Lemma (3 h)
- 10. Minkowski's Theorem, Radon's Theorem, Helly's Theorem, Tverberg's Theorem (5 h)

Class

- 1. Proving combinatorial identities (2 h)
- 2. Applications of rook polynomials (3 h)
- 3. Making latin squares; proving properties of latin squares (3 h)
- 4. Applications of van der Waerden's and Schur's Theorems (2 h)
- Test (2 h)
- 5. Applications of Four Colour Theorem and minimax theorems (4 h)
- 6. Proving properties of combinatorial designs; applications of combinatorial designs (3 h)
- 7. Constructing of perfect codes (3 h)
- 8. Applications of Sperner's Lemma and basic theorems of combinatorial geometry (6 h) Test (2 h)

Metody kształcenia

Traditional lecture, discussion exercises, work in groups.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
A student knows König-Egarváry's, Menger's, Ford-Fulkerson's Theorems, Four – Colour Theorem and is able to apply them to solve practical exercises.	• K_W03	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne test końcowy 	WykładĆwiczenia
A student knows Sperner's Lemma, Schur's Theorem, van der Waerden's Theorem, Minkowski's Theorem, Radon's Theorem, Helly's Theorem, Tverberg's Theorem, knows proofs of this theorems and examples of their applications.	• K_W03 • K_W04	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne test końcowy 	
A student is able to perform the proof of Fisher's Theorem, knows the definition and examples of finite projective planes, is able to point connections between combinatorial designs and projective planes.	• K_W04	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne test końcowy 	WykładĆwiczenia
A student is able to perform proofs of basic combinatorial identities; to apply root polynomials to solve practical exercises; to use Hadamard's matrices and combinatorial designs to construct codes.	• K_U10	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne test końcowy 	WykładĆwiczenia

Warunki zaliczenia

1. Checking of preparedness of students and their activity during exercise

2. Colloquiums with tasks of different difficulty, allowing to evaluate whether the students have achieved specified learning outcomes in minimal level 3. Written exam

The grade of the module is the arithmetic mean of the exercise grade and the exam grade. The prerequisite of the exam is to get a positive assessment of the exercise. The condition to obtain a positive evaluation of the module is the positive evaluation of the exam.

Literatura podstawowa

1. W. Lipski, W. Marek, Analiza kombinatoryczna, PWN, Warszawa, 1986.

2. K. A. Rybnikow (red.), Analiza kombinatoryczna w zadaniach, PWN, Warszawa, 1988.

3. J. Matoušek, Lectures on Discrete Geometry, Springer, New York, 2002.

Literatura uzupełniająca

1. Z. Palka, A. Ruciński, Wykłady z kombinatoryki, WNT, Warszawa, 1998.

2. R. L. Graham, D. E. Knuth, O. Patashnik, Matematyka konkretna, PWN, Warszawa, 2011.

3. V. Bryant, Aspekty kombinatoryki, WNT, Warszawa, 1997.

Uwagi

Zmodyfikowane przez dr Alina Szelecka (ostatnia modyfikacja: 18-09-2020 13:46)

Wygenerowano automatycznie z systemu SylabUZ