Metody algorytmiczne - opis przedmiotu

informacje ogome	
Nazwa przedmiotu	Metody algorytmiczne
Kod przedmiotu	11.0-WK-MATD-MAL-L-S14_pNadGenOQ5NR
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Mathematics
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacie o przedmiocie

Semestr	3
Liczba punktów ECTS do zdobycia	б
Typ przedmiotu	obieralny
Język nauczania	polski
Sylabus opracował	• dr Florian Fabiś

Formy zajeć

ronny zajęc								
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia			
Laboratorium	30	2	-	-	Zaliczenie na			
					ocenę			
Wykład	15	1	-	-	Egzamin			

Cel przedmiotu

Extensive knowledge of algorithms' constructing and analysis. The ability to implement typical algorithms in practice and also the skills in adapting and modifying of those in extraordinary situations.

Wymagania wstępne

Gaining of competences in computer structured programming. Basic course in algorithms and data structured.

Zakres tematyczny

Lecture

1. NP - complete problems. (2 h)

2. Approximation algorithms. Optimization and decision problems. Optimum and approximate solutions. Absolute performance guarantee and relative performance guarantee of approximation algorithm. Approximation schemes: PTAS, FPTAS. (3 h)

3. Some approximation algorithms. Vertex Cover, Set Cover, Bin Packing, Knapsack, Multiprocessor Scheduling, Graph Coloring, Traveling Salesman. (4 h)

4. Algorithmic methods. Greedy algorithms. Backtracking algorithms. Branch-and-Bound (BB) method. Dynamic programming. Genetic algorithms. Probabilistic algorithms. (6 h)

Laboratory

- 1. Generating random number. Generating random graphs. (2 h)
- 2. Selected combinatorial algorithms for practical applications (4 h)
- 3. Approximation algorithms. (8 h)
- 4. Testing of algorithms that use selected algorithmic methods. (6 h)
- 5. Probabilistic algorithms. (4 h)
- 6. Selected algorithms with numbers. (6 h)

Metody kształcenia

Lecture: problem lecture.

Laboratory: laboratory exercises in computer lab - implementation and testing of selected algorithms.

Each student is supposed to realize three projects during the semester. Each project will consist in implementation of the selected algorithm to solve a concrete practical task, writing a program for it, testing it and presenting a documentation in accordance with the assigned specification. On one out of the three projects the students will work in 2-3 person groups. Furthermore the students will test other algorithms.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu

Symbole efektów Metody weryfikacji Forma zajęć

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student has knowledge of advanced methods of constructing efficient algorithms;	• K_W11	 aktywność w trakcie zajęć 	 Wykład
the concept of probabilistic algorithms and can give examples of their use; the		• egzamin - ustny, opisowy,	Laboratorium
selected algorithms with numbers.		testowy i inne	
		• projekt	
		• test	
Student knows the basic approximation algorithms and can implement them in	• K_W11	 aktywność w trakcie zajęć 	 Wykład
programs.	• K_U15	 egzamin - ustny, opisowy, testowy i inne 	 Laboratorium
		• projekt	
		• test	
Student is able to work in project team.	• K_K02	 aktywność w trakcie zajęć 	• Laboratorium
		• projekt	

Warunki zaliczenia

Lecture. Written examination verifying the education outcome in area of knowledge and skills.

Laboratory. Final grade is granted based on number of points received during studies. Points are received for written tests, active participation in classes and completed project. Final course grade consists of laboratory classes' grade (50%) and examination grade (50%). Positive grade from laboratory classes is the necessary condition for participation in examination. The positive grade from examination is the necessary condition for course completion.

Literatura podstawowa

1. Aho A., Hopcroft J.E., Ullman J.D.: Projektowanie i analiza algorytmów komputerowych, PWN, Warszawa 1983.

- 2. Błażewicz J. : Złożoność obliczeniowa problemów kombinatorycznych, WNT, Warszawa 1988.
- 3. Cormen T.H., Leiserson C.E., Rivest R.L., Wprowadzenie do algorytmów, WNT, Warszawa 1997.
- 4. Vazirani V. V. : Algorytmy aproksymacyjne, WNT, 2004.

Literatura uzupełniająca

- 1. Aho A., Hopcroft J.E., Ullman J.D., : The Design and Analysis of Computer Algorithms.
- 2. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest: Introduction to Algorithms, MIT Press, 2001.
- 3. Knuth D.E.: The Art of Computer Programming.
- 4. Vazarni V. V. : Approximation Algorithms, Springer, 2003.

Uwagi

Zmodyfikowane przez dr Alina Szelecka (ostatnia modyfikacja: 18-09-2020 13:46)

Wygenerowano automatycznie z systemu SylabUZ