Procesy stochastyczne 2 - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Procesy stochastyczne 2
Kod przedmiotu	11.1-WK-MATD-PS2-Ć-S14_pNadGenUXCK8
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Mathematics
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacje o przedmiocie

, , , , , , , , , , , , , , , , , , ,	
Semestr	3
Liczba punktów ECTS do zdobycia	7
Typ przedmiotu	obieralny
Język nauczania	polski
Sylabus opracował	• prof. dr hab. Jerzy Motyl

Formy zajęć

· •···) =•.)?	•				
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)	
Ćwiczenia	30	2	-	-	Zaliczenie na
					ocenę
Wykład	30	2	-	-	Egzamin

Cel przedmiotu

After the course of "stochastic processes 2" students should be able to solve themselves practical and theoretical problems on the topic.

Wymagania wstępne

Probability theory, mathematical analysis, functional analysis.

Zakres tematyczny

Lecture:

Introduction (5 h.)

- 1. Stochastic processes in practical problems
- 2. Elements of stochastic analysis, stochastic processes, definition and properties, Kołmogorov's theorem
- 3. Wiener process: existence and properties
- Stochastic square-mean analysis (13 h.):
- 1. Hilbert process and different types of its convergences
- 2. Square-mean continuity and differentiability of Hilbert processes
- 3. Square-mean integrals of Riemann and Lebesgue type
- 4. Square-mean integrability
- 5. Variation of stochastic processes, existence of Riemann-Stieltjes and Lebesgue-Stieltjes trajectory integrals
- Stochastic Itô integral (7 h.):
- 1. Wiener filtration and adapted processes
- 2. Simple processes and their Wiener integrals
- 3. Convergence of simple processes to process from M[a,b] and convergence of their integrals in L2 (Ω)
- 4. Stochastic Itô integral and its properties
- 5. Itô formula and its applications
- 6. Stochastic Itô differential equations

Class

Properties of random variables Properties of stochastic processes Convergence of stochastic processes continuity and differentiability of Hilbert processes Stochastic differentials of different processes Applications of Itô formula Solving of stochastic Itô differential equations

Metody kształcenia

Conventional lecture; problem lecture

Auditorium exercises - solving standard problems enlightening the significance of the theory, exercises on applications, solving problems.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student has in-depth knowledge in the chosen field of theoretical mathematics or applied.	• K_W04	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne 	WykładĆwiczenia
Student has the ability to validate evidence of formal building of proofs.	• K_U03	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne 	WykładĆwiczenia
Student uses the language and methods of functional analysis in mathematical analysis and its applications, in particular property uses the classic Banach spaces and Hilbert.	• K <u>_U09</u>	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne 	WykładĆwiczenia
Student in the selected field can carry out evidence which, if necessary, also the tools from other departments of mathematics.	• K_U14	 aktywność w trakcie zajęć egzamin - ustny, opisowy, testowy i inne 	WykładĆwiczenia
Student knows the limitations of his own knowledge and understands the need for further education.	• K_K01	aktywność w trakcie zajęćdyskusja	WykładĆwiczenia
Student is able to formulate opinions on the basic issues of mathematical proofs.	• K_K04	 aktywność w trakcie zajęć dyskusja 	WykładĆwiczenia

Warunki zaliczenia

Final exam and grade.

Literatura podstawowa

1. R. Lipcer, A. Sziriajew, Statystyka procesów stochastycznych, PWN 1981.

2. K. Sobczyk, Stochastyczne równania różniczkowe, WNT 1996.

3. M. Fisz, Rachunek prawdopodobieństwa i statystyka matematyczna, PWN 1958.

Literatura uzupełniająca

1. E. Parzen, Stochastic processes, Holden-Day Inc. 1962.

2. C.W. Gardiner, Handbook of stochastic methods for Physics, Chemistry and the Natural Sciences, Springer-Verlag 1985.

Uwagi

Zmodyfikowane przez dr Alina Szelecka (ostatnia modyfikacja: 18-09-2020 13:46)

Wygenerowano automatycznie z systemu SylabUZ