Algebra liniowa 2 - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Algebra liniowa 2
Kod przedmiotu	11.1-WK-MATP-AL2-Ć-S14_pNadGenINHLH
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Mathematics
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacje o przedmiocieSemestr2Liczba punktów ECTS do zdobycia6Typ przedmiotuobowiązkowyJęzyk nauczaniapolskiSylabus opracowałdr hab. Krzysztof Przesławski, prof. UZ

Formy zajęć								
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia			
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)				
Ćwiczenia	30	2	-	-	Zaliczenie na			
					ocenę			
Wykład	30	2	-	-	Egzamin			

Cel przedmiotu

The objective of the whole course (linear algebra 1 and 2) is to prepare participants to self-study of theoretical and practical problems involving methods of linear algebra. The aim of each student should be to master the material included in the recommended book.

Wymagania wstępne

Linear algebra 1.

Zakres tematyczny

Lecture

Systems of linear equations

1. Characteristic equation; eigenvectors; eigenvalues; examples and applications. (4h)

Jordan decomposition

- 1. Algebraic sum of linear subspaces; direct sum. (1h)
- 2. Nilpotent endomorphisms; Jordan blocks. Invariant subspaces of an endomorphism. (2h)
- 3. Jordan decomposition of an endomorphism; Jordan normal form. (2h)

Euclidean spaces

- 1. Cosine theorem geometric definition of a scalar product; scalar product in coordinate spaces. (1h)
- 2. Formal definition of a scalar product; norm; Schwarz inequality; angle between two vectors, triangle inequality; parallelogram law. (2h)
- 3. Orthogonality: Pythagorean theorem, orthonormal basis.(1h)
- 4. Gram-Schmidt algorithm, existence of an orthonormal basis, expansion of a vector with respect to an orthogonal basis, orthogonal complement. (3h)
- 5. Isomorphic Euclidean spaces; canonical isomorphism between a Euclidean space and its dual. (1h)
- 6. Conjugate of a linear transformation; spectral theorem for self-adjoint operations.

7. Orthogonal transformations; decomposition of a space into minimal invariant subspaces: rotations, reflections. Canonical matrix of an orthogonal transformation. Orientation.(5h)

Bilinear forms

- 1. Multilinear forms: skew forms, symmetric forms. (1h)
- 2. Bilinear symmetric forms: matrix of a form with respect to a given frame. (1h)
- 3. Diagonalization of a bilinear symmetric form; Sylvester's law. (2h)
- 4. Quadratic forms; polarization formula the one-to-one correspondence between symmetric and quadratic forms. (1h)

Class

- Systems of linear equations
- 1. Solving eigenvalue problems. (4h)
- Jordan decomposition
- 1. Simple examples. Information on numerical packages. (2h)

Euclidean spaces

1. Finding the angle between vectors. Checking whether a given form is a scalar product (2h)

2. Finding an orthonormal basis by Gram-Schmidt orthogonalisation process. Gram's determinant and its geometrical interpretation. (5h)

3. Class test

4. Diagonalisation of simple self-adjoint transformations. (4h)

5. Classification of orthogonal transformations in dimensions 2 and 3. Composition of orthogonal transformations. Reduction of orthogonal matrices to their canonical forms – examples. (5h)

Bilinear forms

1. Matrix of a bilinear form. Decompsition of a form into skew and symmetric parts. (1h)

2. Diagonalization of bilinear forms (quadratic forms). (2h)

Metody kształcenia

Traditional lecturing, solving problems under the supervision of the instructor.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student knows the notion of an eigenvalue, and an eigenvector. He is able to find them for problems of medium complexity (e.g. small size; presence of symmetries).	• K_W03 • K_W04	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Ćwiczenia
Student knows, on an operational level, basic theorems of linear algebra.	 K_W07 K_U16 K_U21 	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Ćwiczenia
Student understands the meaning of an abstract Euclidean space for geometrisation of practical problems; is able to calculate an appropriate orthonormal basis; knows, and is able to find the Fourier expansion of a vector; can find the basis of eigenvectors for a simple self-adjoint transformation.	• K_U20	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Ćwiczenia
Student is capable to reduce an orthogonal transformation to its canonical form in simple two or three dimensional cases; knows how to reduce a quadratic form to its canonical form.	• K_U21	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Ćwiczenia

Warunki zaliczenia

- 1. Preparation of the students and their active participation is assessed during each class by their instructor.
- 2. Class tests with problems of diverse difficulty helping to assess whether a student achieved minimal outcomes.
- 3. Written examination: It consists of around 18 problems. Each problem consists of 2 or 3 statements. To solve a problem, one has only to decide whether the statements are true or false. For some of them, however, explanations are demanded.

Final grade = 0.4 x class grade + 0,6 x exam grade. In order to be allowed to take the exam a student has to have a positive class grade. In order to pass the exam a student has to have a positive exam grade

Literatura podstawowa

1. Strang, Gilbert, Linear Algebra and Its Applications, Cengage Learning, 2005.

Literatura uzupełniająca

1. G. Birkhoff, S. Mac Lane, A Survey of Modern Algebra, A.K. Peters, 1997.

Uwagi

Zmodyfikowane przez dr Alina Szelecka (ostatnia modyfikacja: 18-09-2020 13:45)

Wygenerowano automatycznie z systemu SylabUZ