Systemy baz danych 1 - opis przedmiotu

		71
Informac	ne c	ndolne
morniac	JC C	gome

informacje ogome	
Nazwa przedmiotu	Systemy baz danych 1
Kod przedmiotu	11.3-WK-MATP-SBD1-Ć-S14_pNadGenONGCT
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Mathematics
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia	semestr zimowy 2020/2021

Informacie o przedmiocie

Semestr	6
Liczba punktów ECTS do zdobycia	6
Typ przedmiotu	obieralny
Język nauczania	polski
Sylabus opracował •	prof. dr hab. Mieczysław Borowiecki
•	dr Anna Fiedorowicz

Formv zaieć

Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Ćwiczenia	15	1	-	-	Zaliczenie na ocenę
Laboratorium	30	2	-	-	Zaliczenie na ocenę

Cel przedmiotu

The course introduces basic notions, definitions and problems related to the relational models of databases. At the end of the course each student should be able to design and create both database and database application.

Wymagania wstępne

Fundamentals of logic. Programming skills.

Zakres tematyczny

Lecture:

- 1. The basic notions and definitions related to the relational databases.
- 2. Operations on relation (union, difference, intersection, complement, projection, selection, join, division).
- 3. The functional dependencies and Armstrong's axioms.
- 4. Relational schemes.
- 5. Decompositions.
- 6. Normalization through decomposition (1NF, 2NF, 3NF,B-CNF, 4NF, 5NF).
- 7. Multivalued dependencies.
- 8. Inference axiom for multivalued dependencies.

Class:

- 1. Operations on relation
- 2. Normalization through decomposition (2NF, 3NF,B-CNF).
- 3. Structured Query Language.
- a. Data Manipulation Language,
- b. Data Definition Language,
- c. Data Control Language.
- 4. Creating the project of a database.
- a. Data-Flow Diagram,
- b. Entity-Relationship Diagrams,
- c. Creating Database Scheme.

Laboratory:

- 1. The use of SQL.
- 2. Data types, expressions and operators, conditions, functions, procedures.
- 3. SELECT statement:
- a. inner join,

- b. outer join,
- c. simple subqueries,
- d. correlated subqueries,
- e. grouping and aggregate functions.
- 4. Defining the database structure:
- a. domain,
- b. tables,
- c. views,
- d. indexes,
- e. sequences/generators,
- f. triggers,
- g. referential integrity constraints.
- 5. Database user management and control of transactions.

Metody kształcenia

Lecture: Seminar lecture. Class: Method problematic, brainstorming. Laboratory: Computer laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Students understand the basic concepts and knows the theoretical basis of relational databases; know the method of normalization of a scheme up to 2NF 3NF and BCNF.	• K_W03	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Laboratorium Ćwiczenia
Students know the basic syntax of SQL commands.	• K <u>_W08</u>	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Laboratorium Ćwiczenia
Students are able to extract the information stored in the database using SQL commands, using joins, subqueries and grouping.	• K_U04	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Laboratorium Ćwiczenia
Students are able to design a simple database schema and generate it using computer tools like CASE.	• K_U28	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Laboratorium Ćwiczenia
Students are able to present the basic concepts and theorems related to the relational data model.	• K_U36	 egzamin - ustny, opisowy, testowy i inne obserwacja i ocena aktywności na zajęciach test 	 Wykład Laboratorium Ćwiczenia

Warunki zaliczenia

Lecture: The exam consists of two parts, written and oral, access to the oral part is getting 30% of the points of the written part, 50% of the points from the written part guarantees a positive evaluation.

Class: condition pass is 50% of the points of the four planned tests or final test covering all the material processed.

Laboratory: condition pass is 50% of the points of the four planned tests or final test covering all the material processed.

Final evaluation of the course is the arithmetic mean of the lecture, class and laboratory. However, a prerequisite for a positive final assessment is to obtain positive evaluations of the lecture, class and laboratory.

Literatura podstawowa

- 1. T. Pankowski, Podstawy baz danych, Wydawnictwo Naukowe PWN, W-wa, 1992.
- 2. D. Maier, The theory of relational databases, Computer Science Press, 1983.
- 3. M. Gruber, SQL, Helion, 1996.
- 4. M. Wybrańczyk, Delphi 7 i bazy danych, Helion, 2003.
- 5. G.Reese, Java. Aplikacje bazodanowe. Najlepsze rozwiązania, Helion, 2003.

Literatura uzupełniająca

- 1. W. Kim, Wprowadzenie do obiektowych baz danych, WNT, Warszawa, 1996.
- 2. J.D. Ullman, Podstawowy wykład z systemów baz danych, WNT, Warszawa, 1999.
- 3. P. Neil Gawroński, InterBase dla "delfinów", Helion, 2001.
- 4. Jakubowski: SQL w InterBase dla Windows i Linuksa, Helion, Gliwice 2001.
- 5. R. Barker, CASE* Method. Modelowanie związków encji, WNT, Warszawa 2005
- 6. M. Marzec, JBuilder i bazy danych, Helion, 2005.
- 7. Mościcki, I. Kruk, Oracle 10g i Delphi. Programowanie baz danych, Helion, 2006.

Uwagi

Zmodyfikowane przez dr Alina Szelecka (ostatnia modyfikacja: 18-09-2020 13:45)

Wygenerowano automatycznie z systemu SylabUZ