Mathematical methods in physics - opis przedmiotu

Informacje ogólneNazwa przedmiotuMathematical methods in physicsKod przedmiotu13.2-WF-FizD-MMP-S17WydziałWydział Nauk Ścisłych i PrzyrodniczychKierunekFizykaProfilogólnoakademickiRodzaj studiówdrugiego stopnia z tyt. magistraSemestr rozpoczęciasemestr zimowy 2021/2022

Informacje o przedmiocie

Semestr	1
Liczba punktów ECTS do zdobycia	6
Występuje w specjalnościach	Fizyka teoretyczna
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr hab. Maria Przybylska, prof. UZ

Formy zajęć

Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)	
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2	-	-	Zaliczenie na
					ocene

Cel przedmiotu

To teach the students basic mathematical tools of differential geometry and tensor analysis necessary to study general relativity.

Wymagania wstępne

Mathematical analysis I and II, and algebraic and geometric methods in physics.

Zakres tematyczny

Elements of multivariable functions analysis: functions from Rⁿ to Rⁿ, continuity, limits, differentiability, Jacobi matrix of transformation, inverse and implicit function theorems.
Elements of differential geometry: Cartesian and curvilinear coordinate systems, in Rⁿ and in a domain of Rⁿ, Curves in Euclidean space, length of curve, Riemannian metrics, natural parametrisation of curve, curvature and torsions, Serret-Frenet formulae, surfaces in Rⁿ3, first and second fundamental form of surfaces, mean and Gauss curvatures, hypersurfaces immersed in higher-dimensional flat spaces, notion of differential manifold, coordinates on differential manifold, tangent and cotangent spaces.

- Elements of tensor algebra. Space dual to a vector space, multilinear mapping, transformation laws for tensor and tensor fields, algebraic operations on tensors, differential forms as skew-symmetric tensors, examples of applications of tensors in physics.

- Elements of tensor analysis: affine connection, covariant derivative, Christoffel symbols, torsion, Riemannian connection, parallel displacement, equation of parallel displacement, geodesics, curvature tensor, Euclidean coordinate, properties of the Riemann curvature tensor, curvature scalar.

Metody kształcenia

Conventional lecture with emphasis on contents useful for studies of general relativity During class students solve exercises illustrating the content of the lecture with examples related to general relativity

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu

Symbole efektów M

Metody weryfikacji

Forma zajęć

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student knows and understands selected issues multivariate analysis, differential geometry and tensor algebra and analysis. He is familiar with the terminology used in these sciences.	• K2_W02	 egzamin - ustny, opisowy, testowy i inne zaliczenie - ustne, opisowe, testowe i inne 	WykładLaboratorium
Student can transform of tensor fields of various types under change of coordinates, make algebraic operations of tensors, calculate Christoffel symbols from metrics and from geodes equations, determines geodesics. Student calculates curvature tensor and curvature scalar, knows properties of curvature tensor and apply them.	 K2_W02 K2_W05 K2_U05 	 egzamin - ustny, opisowy, testowy i inne zaliczenie - ustne, opisowe, testowe i inne 	 Wykład Laboratorium
Student knows and applies various curvilinear coordinates, determines domain of their definiteness, Student determines natural parametrisation of given curves, calculates curvatures and torsions of curves. Student calculates fundamental forms and curvatures of surfaces.	 K2_W02 K2_W05 K2_U05 	 egzamin - ustny, opisowy, testowy i inne zaliczenie - ustne, opisowe, testowe i inne 	WykładLaboratorium
Student can use mathematical methods to describe and model physical phenomena and processes.	• K2_W05	 dyskusja egzamin - ustny, opisowy, testowy i inne zaliczenie - ustne, opisowe, testowe i inne 	 Wykład Laboratorium
Student can find on their own various teaching materials concerning differential geometry an tensor calculus in Polish and English.	d • <u>K2_U09</u>	 egzamin - ustny, opisowy, testowy i inne zaliczenie - ustne, opisowe, testowe i inne 	WykładLaboratorium
Student is aware of his knowledge and skills. Student recognise the necessity of permanent training and improvement of his knowledge from application of mathematics to general	• K2_K01	• dyskusja	• Laboratorium

relativity as well as to contemporary physics.

Warunki zaliczenia

Lecture:

The course credit is obtained by passing a final written exam composed of tasks of varying degrees of difficulty.

Class:

A student is required to obtain at least the lowest passing grade from tests organized during class. To be admitted to the exam a student must receive a credit for the class Final grade: average of grades from the class and the exam.

Literatura podstawowa

[1] L. M. Sokołowski, Elementy analizy tensorowej, Wydawnictwo Uniwersytetu Warszawskiego, 2010.

[2] M. Spivak, Analiza na rozmaitościach, Wydawnictwo Naukowe PWN, Warszawa 2006.

[3] A. Goetz i inni, Zewnętrzne formy różniczkowe, WNT, Warszawa 1965.

[4] S. Lovett, Differential geometry of Manifolds, A K Peters, Ltd, Natick, Massachusetts 2010.

[5] A. S. Mishchenko, A. Fomenko, A course of Differential Geometry and Topology, Mir Publishers Moscow 1988.

[6] B. A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry - Methods and Applications,

Springer 1992.

[7] A. S. Mishchenko, Yu. P. Solovyev,, A.T. Fomenko, Problems in Differential Geometry and

Topology, Mir Publishers, Moscow 1985.

Literatura uzupełniająca

 P. M. Gadea, J. Munoz Masque, Analysis and Algebra on Differentiable Manifolds, Springer, 2009.
 T. Banchoff, S. Lovett, Differential Geometry of Curves and Surfaces, A K Peters, Ltd, Natick, Massachusetts 2010.

[3] S. Chandrasekhar, The Mathematical Theory of Black Holes, Clarendon Press, Oxford 1983.

[4] E. Karaśkiewicz, Zarys teorii wektorów i tensorów, Państwowe Wydawnictwo Naukowe, Warszawa 1964.

Uwagi

Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 09-05-2021 21:36)

Wygenerowano automatycznie z systemu SylabUZ