High-energy astrophysics - course description

General information	
Course name	High-energy astrophysics
Course ID	13.7-WF-FizD-HEA-S17
Faculty	Faculty of Physics and Astronomy
Field of study	Physics
Education profile	academic
Level of studies	Second-cycle studies leading to MS degree
Beginning semester	winter term 2021/2022

Course information		
Semester	3	
ECTS credits to win	2	
Available in specialities	Astrofizyka komputerowa	
Course type	obligatory	
Teaching language	english	
Author of syllabus		

Classes forms							
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment		
Lecture	30	2	-	-	Exam		

Aim of the course

Consolidation and expansion of the basic concepts of high-energy astrophysics. Forward the message to enable the understanding of high-energy astrophysical processes.

Prerequisites

Knowledge from the introduction to astrophysics, compact objects, Astrophysics I and II.

Scope

- Special Theory of Relativity.
- Physics of fluids.
- Radial processes.
- Star supernovae.
- Neutron stars, pulsars and magnetars.
- Binary systems of compact objects.
- Gamma-ray bursts and gamma-ray burst afterglow.
- Active Galactic Nuclei.

Teaching methods

Lecture with exercises conventional accounting.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Student can use the English-language literature.	 K2_U14 	 an exam - oral, 	 Lecture
	 K2_K01 	descriptive, test and	
		other	
Student is able to carry out the calculations for solving problems and issues high-energy	• K2_U02	• an exam - oral,	• Lecture
astrophysics. Able to interpret astronomical observations carried out in the X-and gamma of the	 K2_U03 	descriptive, test and	
electromagnetic spectrum, and on this basis to estimate the most important physical parameters	 K2_U07 	other	
such as binary systems with a compact object as one of the ingredients.			
Student is able to use their knowledge to construct a simple research projects, as well as to present	• K2_K05	• an exam - oral,	Lecture
their knowledge in a popular science.		descriptive, test and	
		other	
The student knows and understands the course content.	• K2_W03	• an exam - oral,	• Lecture
	 K2_W04 	descriptive, test and	
	• K2_W06	other	

Assignment conditions

Final grade: Oral examination, Condition Assessment - a positive evaluation of the test.

Recommended reading

[1] U. Kolb, Extreme Environment Astrophysics, Cambridge, 2010.

[2] S. Rossweg, M. Brueggen, Introduction to High-Energy Astrophysics, Cambridge, 2007.

[3] M. S. Longair, High Energy Astrophysics, Cambridge, 2011.

Further reading

[1] M. Camenzind, Compact objects in astrophysics, Springer, 2007.

[2] W. H. G. Lewin, M. van der Klis, Compact Stellar X-ray Sources, Cambridge Uni. Press, 2006.

[3] F. Shu, Galaktyki, gwiazdy, życie, Prószyński i S-ka, 2003.

Notes

Modified by dr Marcin Kośmider (last modification: 09-05-2021 21:41)

Generated automatically from SylabUZ computer system