Elementary particle physics - course description

General information	
General information	
Course name	Elementary particle physics
Course ID	13.2-WF-FizD-EPP-S17
Faculty	Faculty of Physics and Astronomy
Field of study	Physics
Education profile	academic
Level of studies	Second-cycle studies leading to MS degree
Beginning semester	winter term 2021/2022

Course information	
Semester	4
ECTS credits to win	2
Available in specialities	Theoretical physics
Course type	obligatory
Teaching language	english
Author of syllabus	• prof. dr hab. Krzysztof Urbanowski

Classes forms						
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment	
Lecture	30	2	-	-	Credit with grade	

Aim of the course

To acquaint students with the fundamental constituents of matter, their classification and outline the methods of a description of them and a description of their interactions.

Prerequisites

Mathematical analysis, mathematical physics, theoretical and relativistic relativistic, foundations of quantum physics.

Scope

Lectures: Historical development of particle physics - the classification of elementary particles. Symmetries. Models of elementary particles and their classification. Relativistic kinematics. Lagrange function in particle physics, fields, currents, symmetries and conservation laws.

Teaching methods

Conventional lectures

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Acquire a general knowledge of the basics of particle physics. Skills in using literature and	• K2_W01	 an evaluation test 	 Lecture
solving basic problems in particle physics. Understanding the need for learning throughout life	• K2_W06		
	 K2_U03 		
	 K2_U08 		
	 K2_U10 		
	 K2_K01 		

Assignment conditions

LECTURE: positive assessment of the test.

Recommended reading

- [1] D. Griffiths, Introduction to elementary particle physics, Wiley 1987.
- [2] G. Kane, Modern elementary particle physics, Adison-Wesley, 1993.
- [3] F. Halzen, A. D. Martin, Quarks and leptons: An introductory course in modern particle physics, Wiley 1984.
- [4] D. Perkins, Wstęp do fizyki wysokich energii, PWN, 2004.

Further reading

[1] J. Karaśkiewicz, Elementy klasycznej I kwantowej teorii pola, UMCS 2003.

Notes

Modified by dr Marcin Kośmider (last modification: 09-05-2021 21:44)

Generated automatically from SylabUZ computer system