Elements of theoretical physics I - course description

General information	
Course name	Elements of theoretical physics I
Course ID	13.2-WF-FizD-ETP-S18
Faculty	Faculty of Physics and Astronomy
Field of study	Physics
Education profile	academic
Level of studies	Second-cycle studies leading to MS degree
Beginning semester	winter term 2021/2022

Course information	
Semester	1
ECTS credits to win	5
Course type	obligatory
Teaching language	english
Author of syllabus	

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment			
Lecture	30	2	-	-	Exam			
Class	30	2	-	-	Credit with grade			

Aim of the course

The course provides an introduction to the conceptual and mathematical foundations of modern theoretical physics, with a particular emphasis on analytical mechanics and relativity.

Prerequisites

Knowledge of foundations of physics and mathematics corresponding to educational level undergraduate

Scope

Mathematical methods in Theoretical Physics: differential equations, the scalar and vector fields, foundations of analytic functions theory.

Classical dynamics. Newton's laws: space and time, mass and force, the first and the second laws - intertial frames and noninertial frames. Systems with variuos resistance. Systems with varying mass.

Elements of the variational methods. Euler-Lagrange equations and applications. Constrained systems.

 $\label{thm:conservation} \mbox{Symmetries and conservation laws, the Hamiltonian formulation of classical physics.}$

Teaching methods

Conventional lectures and classes.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Student can find on his/her own special teaching materials concerning theoretical physics	• K2_W06	 a discussion 	Class
problems in Polish and English.	 K2_U10 	 activity during the classes 	
	• K2_U11		
Skill of theoretical interpretations known experimental physics facts and using mathematical	• K2_W01	activity during the classes	Lecture
methods and methods of theoretical physics to solve problems and to describe the processes	• K2_W02	 an evaluation test 	Class
occurring in nature. Understanding the role of mathematics in physics.	 K2_U03 	an exam - oral,	
		descriptive, test and other	

Assignment conditions

Lecture: The exam. Class: the test-work.

Final score: (50%) exam score + (50%) classes score.

Recommended reading

- [1] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, Pergamon Press.
- [2] F. Scheck Mechanics: From Newton's Laws to Deterministic Chaos, Springer 2003.
- [3] J. R. Taylor, Classical Mechanics, University Science Book, 2005

Further reading

- [1] I. Arnold, Metody matematyczne mechaniki klasycznej, PWN, Warszawa 1981.
- [2] H. Goldstein, C. Poole, J. Safko, Classical mechanics, Pearson New International Edition, 2013

Notes

Modified by dr Marcin Kośmider (last modification: 09-05-2021 21:34)

Generated automatically from SylabUZ computer system