Elements of theoretical physics I - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Elements of theoretical physics I
Kod przedmiotu	13.2-WF-FizD-ETP-S18
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Fizyka
Profil	ogólnoakademicki
Rodzaj studiów	drugiego stopnia z tyt. magistra
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie	
Semestr	1
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	

Formy zajęć								
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia			
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)				
Wykład	30	2	-	-	Egzamin			
Ćwiczenia	30	2	-	-	Zaliczenie na			
					ocenę			

Cel przedmiotu

The course provides an introduction to the conceptual and mathematical foundations of modern theoretical physics, with a particular emphasis on analytical mechanics and relativity.

Wymagania wstępne

Knowledge of foundations of physics and mathematics corresponding to educational level undergraduate

Zakres tematyczny

Mathematical methods in Theoretical Physics: differential equations, the scalar and vector fields, foundations of analytic functions theory.

Classical dynamics. Newton's laws: space and time, mass and force, the first and the second laws - intertial frames and noninertial frames. Systems with variuos resistance. Systems with varying mass.

Elements of the variational methods. Euler-Lagrange equations and applications. Constrained systems.

Symmetries and conservation laws, the Hamiltonian formulation of classical physics.

Metody kształcenia

Conventional lectures and classes.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Skill of theoretical interpretations known experimental physics facts and using	• K2_W01	 aktywność w trakcie 	 Wykład
mathematical methods and methods of theoretical physics to solve problems and to	 K2_W02 	zajęć	 Ćwiczenia
describe the processes occurring in nature. Understanding the role of mathematics in physics.	• K2_U03	egzamin - ustny, opisowy, testowy i innekolokwium	
Student can find on his/her own special teaching materials concerning theoretical physics problems in Polish and English.	K2_W06K2_U10K2_U11	aktywność w trakcie zajęćdyskusja	• Ćwiczenia

Warunki zaliczenia

Lecture: The exam. Class: the test-work.

Final score: (50%) exam score + (50%) classes score.

Literatura podstawowa

[1] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, Pergamon Press.

[2] F. Scheck Mechanics: From Newton's Laws to Deterministic Chaos, Springer 2003.

[3] J. R. Taylor, Classical Mechanics, University Science Book, 2005

Literatura uzupełniająca

[1] I. Arnold, Metody matematyczne mechaniki klasycznej, PWN, Warszawa 1981.

[2] H. Goldstein, C. Poole, J. Safko, Classical mechanics, Pearson New International Edition, 2013

Uwagi

Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 09-05-2021 21:34)

Wygenerowano automatycznie z systemu SylabUZ