Scientific computing with C++ - course description

General information	
Course name	Scientific computing with C++
Course ID	13.2-WF-FizD-SCC++-S21
Faculty	Faculty of Physics and Astronomy
Field of study	Physics
Education profile	academic
Level of studies	Second-cycle studies leading to MS degree
Beginning semester	winter term 2021/2022

Course information	
Semester	1
ECTS credits to win	6
Available in specialities	Computer Physics
Course type	obligatory
Teaching language	english
Author of syllabus	• dr Marcin Kośmider

Classes forms					
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment
Laboratory	45	3	-	-	Credit with grade
Lecture	15	1	-	-	Exam

Aim of the course

The aim of the course is to learn how to create software in C ++ using modern software development techniques and C ++ libraries. The contents of the laboratories are related to simulations, modeling and data analysis

Prerequisites

Knowledge of structural and object-oriented programming in any programming language.

Scope

I. Introduction to C++

- 1. Variables, data types, static typing, type convertion, compilation, naming conventions
- 2. Mathematical and logical operators, conditional statement and operator
- 3. Loops
- 4. Functions
- 5. Arrays
- 6. Pointers and references
- 7. Memory management
- II. Introduction to OOP in C++
- 1. Classes, objects, methods
- 2. STL Container string, vector, map
- 3. IO operations
- 4. Errors and Exceptions
- III Developing classes and functions for selected scientific computations and simulations
- 1. Search algorithms
- 2. Sorting algorithms
- 3. Monte Carlo algorithms
- 4. Numerical integration algorithms
- 5. Least square methods
- 6. Matrix operations

Teaching methods

Lecture, laboratory exercises, project method, group work, ideas exchange, brainstorming, presentation, work with documentation, self-learning

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
The student is able to develop a proposed problem in the form of a project, submit a report on the implementation of the project in written and oral form.	t	a preparation of a projecta projectactivity during the classes	 Laboratory
The student is able to discuss the characteristic features and way of working with libraries learned during laboratory classes and used to write a semester project.	3	 an exam - oral, descriptive, test and other 	• Lecture
The student is able to work in a group		activity during the classesan ongoing monitoring during classes	• Laboratory
The student is able to write a program for numerical solution of the presented physics problem with the use of appropriate libraries.		a projectactivity during the classesan ongoing monitoring during classes	• Laboratory
The student is able to independently search for libraries helpful in solving physics problems, read their documentation and use them, in accordance with the license entries, to solve a given problem		a projectactivity during the classesan ongoing monitoring during classes	• Laboratory
The student is able to discuss how to create an IT project and propose techniques and tools to facilitate its implementation.		 an exam - oral, descriptive, test and other 	• Lecture

Assignment conditions

Laboratory: Minimum 50% of test points (total), semester project. Evaluation from the laboratory: 50% test rating, 50% project evaluation. Lecture: exam Final mark: 70% laboratory, 30% exam grade

Recommended reading

- 1. Thinking in C++, Bruce Eckel wydanie angielskie online
- 2. "Wprowadzenie do C++. Efektywne nauczanie. Wydanie III", C.Hortsman, Helion
- 3. "Opus magnum C++ 11. Programowanie w języku C++. Wydanie II poprawione", J.Grębosz, Helion
- 4. "C++17 STL Cookbook" J.Galowicz, Helion

Further reading

Internet

Notes

Modified by dr Marcin Kośmider (last modification: 10-05-2021 22:22)

Generated automatically from SylabUZ computer system