Scientific computing with C++ - opis przedmiotu

Informacje ogólne

Scientific computing with C++
13.2-WF-FizD-SCC++-S21
Wydział Nauk Ścisłych i Przyrodniczych
Fizyka
ogólnoakademicki
drugiego stopnia z tyt. magistra
semestr zimowy 2021/2022

Informacje o przedmiocie

Semestr	1
Liczba punktów ECTS do zdobycia	6
Występuje w specjalnościach	Fizyka komputerowa
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	dr Marcin Kośmider

Formy zajęć

Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Laboratorium	45	3	-	-	Zaliczenie na
					ocenę
Wykład	15	1	-	-	Egzamin

Cel przedmiotu

The aim of the course is to learn how to create software in C ++ using modern software development techniques and C ++ libraries. The contents of the laboratories are related to simulations, modeling and data analysis

Wymagania wstępne

Knowledge of structural and object-oriented programming in any programming language.

Zakres tematyczny

I. Introduction to C++

- 1. Variables, data types, static typing, type convertion, compilation, naming conventions
- 2. Mathematical and logical operators, conditional statement and operator
- 3. Loops
- 4. Functions
- 5. Arrays
- 6. Pointers and references
- 7. Memory management

II. Introduction to OOP in C++

- 1. Classes, objects, methods
- 2. STL Container string, vector, map
- 3. IO operations
- 4. Errors and Exceptions

III Developing classes and functions for selected scientific computations and simulations

- 1. Search algorithms
- 2. Sorting algorithms
- 3. Monte Carlo algorithms
- 4. Numerical integration algorithms
- 5. Least square methods
- 6. Matrix operations

Metody kształcenia

Lecture, laboratory exercises, project method, group work, ideas exchange, brainstorming, presentation, work with documentation, self-learning

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student is able to develop a proposed problem in the form of a project, submit a report on the implementation of the project in written and oral form.		 aktywność w trakcie zajęć projekt przygotowanie projektu 	• Laboratorium
The student is able to discuss how to create an IT project and propose techniques and tools to facilitate its implementation.	ł	 egzamin - ustny, opisowy, testowy i inne 	• Wykład
The student is able to discuss the characteristic features and way of working with libraries learned during laboratory classes and used to write a semester project.		• egzamin - ustny, opisowy, testowy i inne	• Wykład
The student is able to independently search for libraries helpful in solving physics problems, read their documentation and use them, in accordance with the license entries, to solve a given problem		 aktywność w trakcie zajęć bieżąca kontrola na zajęciach projekt 	• Laboratorium
The student is able to work in a group		 aktywność w trakcie zajęć bieżąca kontrola na zajęciach 	• Laboratorium
The student is able to write a program for numerical solution of the presented physics problem with the use of appropriate libraries.	:	 aktywność w trakcie zajęć bieżąca kontrola na zajęciach projekt 	• Laboratorium

Warunki zaliczenia

Laboratory: Minimum 50% of test points (total), semester project. Evaluation from the laboratory: 50% test rating, 50% project evaluation. Lecture: exam Final mark: 70% laboratory, 30% exam grade

Literatura podstawowa

1. Thinking in C++, Bruce Eckel - wydanie angielskie online

2. "Wprowadzenie do C++. Efektywne nauczanie. Wydanie III", C.Hortsman, Helion

3. "Opus magnum C++ 11. Programowanie w języku C++. Wydanie II poprawione", J.Grębosz, Helion

4. "C++17 STL Cookbook" J.Galowicz, Helion

Literatura uzupełniająca

Internet

Uwagi

Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 10-05-2021 22:22)

Wygenerowano automatycznie z systemu SylabUZ