Technologies in environmental protection - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Technologies in environmental protection
Kod przedmiotu	13.9-WB-OS2P-Tech_środ-S17
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Environmental Protection
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie

Semestr	3
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. Leszek Jerzak

Formy zajęć

) =							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Wykład	30	2	-	-	Egzamin		
Laboratorium	30	2	-	-	Zaliczenie na		
					ocenę		

Cel przedmiotu

The aim of the course is to familiarize students with the basic concepts, unit processes and technological methods used in water treatment for municipal and industrial purposes. Theoretical foundations of mechanical and biological treatment of municipal and industrial sewage. Methods of municipal waste treatment, reduction of pollutant emissions to the atmosphere

Wymagania wstępne

High school level - chemistry, biology, ecology, biotechnology.

Zakres tematyczny

Lecture: Water, sources of supply, quality requirements, technological systems for water treatment. Sedimentation - theoretical foundations and application. Unit processes in water purification - theoretical foundations and application. Domestic and domestic wastewater - quantitative and qualitative characteristics. Mechanical wastewater treatment - theoretical foundations and technological systems. Biological oxygen treatment of wastewater - theoretical foundations and methods of implementation. Anaerobic wastewater treatment processes. Water treatment for industrial purposes. Purification of industrial wastewater. Waste - collection, disposal, use. Atmospheric air pollution, emission reduction. Exercises: Water balance for the city. Basic processes used in water treatment, technological concept of the water treatment plant - computational part and drawing part. Wastewater balance with the proposal of a technological purification series - technical description with a drawing part. Basic technological processes in wastewater treatment. Waste balance for the city - computational part. Waste balance for the city - computational part.

Metody kształcenia

Lectures. Labs.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
knows and understands the basic processes and phenomena occurring	• K1A_W93	 kolokwium 	 Laboratorium
during the treatment of water and sewage as well as on landfills.			
Knows the basic technologies used in water treatment, wastewater	• K1A_W93	• kolokwium	 Wykład
treatment and waste treatment.			
uses literature sources and other sources (e-learning), can interpret and	• K1A_U08	• kolokwium	• Wykład
combine into a coherent whole information obtained.			
applies the self-education method and sees the need to learn and improve	• K1A_U11	 kolokwium 	 Wykład
one's skills	• K1A_U17		

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
he works in a group and organizes work in a specific scope, listens to the teacher's remarks and applies to his recommendations.	• K1A_U12	• kolokwium	• Laboratorium
uses the acquired skills in a work environment and in other environments	K1A_U26K1A_K20	• kolokwium	• Laboratorium
Performs and carries out observations of processes occurring during water treatment and wastewater treatment.	r • K <u>1A_U28</u>	• kolokwium	• Laboratorium
explains the relationship between the state of the environment and human economic activity	• K1A_U61	 zaliczenie - ustne, opisowe, testowe i inne 	• Laboratorium

Warunki zaliczenia

Lecture - final exam, to which the student is admitted on the basis of the previous passing of the exercises, carried out in writing (the exam lasts 60 minutes). It is necessary to get 60% of positive answers to pass on a satisfactory grade.

Exercises - the condition for passing is to get positive grades from all the exercises planned for implementation as part of the exercise program. The following are subject to assessment: self-made water balance, technological concept of the water treatment plant, sewage balance, waste balance and tests testing knowledge - positive assessment over 60% of points obtained. The final grade is the arithmetic mean of partial grades.

Literatura podstawowa

- Kowal A. L., Świderska-Bróż M.: Oczyszczanie wody. Podstawy teoretyczne i technologiczne, procesy i urządzenia. Wydawnictwo Naukowe PWN, Warszawa 2007.
- Hermanowicz W.: Fizyczno-chemiczne badanie wody i ścieków. Wyd. Arkady, Warszawa 1999.
- Cywiński B., Gdula St., Kempa E., "Oczyszczanie ścieków miejskich" Arkady. Warszawa 1972
- Hartmann L: Biologiczne oczyszczanie ścieków, Wyd. Instalator Polski, W-wa 1996
- Imhoff K. i K.: Kanalizacja miast i oczyszczanie ścieków, Poradnik, Projprzem Eko, Bydgoszcz 1997

Literatura uzupełniająca

- Klimiuk E., Łebkowska M.: Biotechnologia w ochronie środowiska. PWN, Warszawa 2004.
- Schlegel H.G.: Mikrobiologia ogólna. Wydawnictwo Naukowe PWN. Warszawa 2004.
- Szklarczyk M., Ochrona atmosfery. Wydawnictwo UW-M, Olsztyn 2001
- Jędrczak A., Biologiczne przetwarzanie odpadów. PWN, Warszawa 2007
- Niemiecki zbiór reguł ATV-DVWK- 2002. Wyd. Seidel- Przywecki, Warszawa

Uwagi

Zmodyfikowane przez dr Olaf Ciebiera (ostatnia modyfikacja: 19-05-2021 22:02)

Wygenerowano automatycznie z systemu SylabUZ