OS6a - Biotechnology in environmental protection - course description

General information	
Course name	OS6a - Biotechnology in environmental protection
Course ID	13.4-WB-OS2P-BT_oś-S17
Faculty	Faculty of Biological Sciences
Field of study	Environmental Protection
Education profile	academic
Level of studies	First-cycle studies leading to Bachelor's degree
Beginning semester	winter term 2021/2022

Course information		
Semester	5	
ECTS credits to win	5	
Course type	obligatory	
Teaching language	english	
Author of syllabus	dr Andrzej Jurkowski	

Classes forms							
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment		
Lecture	30	2	-	-	Exam		
Class	30	2	-	-	Credit with grade		

Aim of the course

Getting to know the bioprocesses, the type of bioreactors, enlarging the scale of processes, biological methods of sewage treatment, recovery of protein from biomass, safety rules of biotechnology and biorisks

Prerequisites

Fundamentals of biotechnology, biology, chemistry.

Scope

The lectures Safety in the biotechnology science. The classification microorganisms in terms biorisks. Immobilized enzyme: production and application. Types of bioprocesses: biosynthesis, biotransformation, biohydrolysis, fermentation, bioleaching, biodegradation. Biotechnological reactors: types, principles of action, demands. Criteria change the scale biotechnological processes. Biological methods of wastewater treatment. Microbiology of activated sludge. The recovery of the protein from the biomass produced wastewater. Bioremediation of soils. Isolation of microorganisms from the environment resistant to heavy metals. Composting of waste. Microbial decomposition of materials. Disposal of solid waste.

The Exercises. Microscopic examination of the activated sludge. Biological control methods composting process. Microbial decomposition of materials. Isolation of microorganisms from the environment resistant to heavy metals. Adsorption of metal cations by fungi.

Teaching methods

-feeding (lecture in the form of a multimedia presentation)

-practical (laboratory exercises in the form of experience with the use of equipment and facilities in the biotechnology laboratory)

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
is aware of the need for a systematic review of scientific literature, update	 K1A_U04 	 an evaluation test 	 Lecture
knowledge and knows its practical application	 K1A_U30 	 an exam - oral, descriptive, test and 	Class
		other	
describes events and processes related to environmental protection	• K1A_W36	an evaluation test	• Lecture
	 K1A_W52 	 an exam - oral, descriptive, test and 	Class
	• K1A_U52	other	
describes events and processes related to environmental protection	• K1A_W36	an evaluation test	• Lecture
		• an exam - oral, descriptive, test and	Class
		other	

Assignment conditions

The lecture - the test is conducted in written form. It last 60 minutes and contains 5 opened questions. 60% points are required to get mark credit.

Laboratory - the condition for passing is to obtain positive marks from reports on all laboratory exercises and to write a final test (5 questions, 60 minutes, a positive grade - at

least 60% of points).

Recommended reading

- J. Monika.Environmental Biotechnology. 2014. Alpha Science International Ltd
- Klimiuk E., M. Łebkowska. Biotechnologia w ochronie środowiska. PWN. 2003.
- Błaszczyk M.K. Mikroorganizmy w ochronie środowiska. PWN. 2007.
- Chmiel A. Biotechnologia. Podstawy mikrobiologiczne i biochemiczne. PWN. 1998.
- Miksch K., Sikora J. Biotechnologia ścieków. PWN. 2010.
- Jędrczak A. Biologiczne przetwarzanie odpadów. PWN. 2007.

Further reading

Notes

Modified by dr Andrzej Jurkowski (last modification: 24-05-2021 12:28)

Generated automatically from SylabUZ computer system