Principles of programming - course description

General information				
Course name	Principles of programming			
Course ID	11.3-WE-AutP-PrinProgr-Er			
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics			
Field of study	Automatic Control and Robotics			
Education profile	academic			
Level of studies	First-cycle Erasmus programme			
Beginning semester	winter term 2021/2022			

Course information				
Semester	1			
ECTS credits to win	5			
Course type	obligatory			
Teaching language	english			
Author of syllabus	• dr inż. Grzegorz Łabiak			

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time	e) Hours per semester (part-time)	Hours per week (part-time) Form of assignment			
Lecture	30	2	-	-	Exam			
Laboratory	30	2		-	Credit with grade			

Aim of the course

The goal of the subject is to teach programmining in C language. In the first place the learning consists in teaching syntax and semantics of C language. Next, students are instructed how to implement simple computational algorithms. Apart from that some elements of computational complexity are introduced, which allows to asses computational cost of implemented solutions.

Prerequisites

Fundamentals of mathematics

Scope

Introductory information: a program and its components

Pogramming environment. Source files. Compilation. Basic elements of program and its structure. Main function. Functions and procedures.

Basic types. Variables. In/out operations. Operators.

Iterative loops: for, while, do-while

Decision instructions.

Creation of own Functions.

Arrays and character strings.

Structures.

Pointers.

Sorting algorithms: buble sort, selection sort, quick sort.

Teaching methods

Lecture, laboratory exercises

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Student knows the difference between structural and object oriented programming		 an ongoing monitoring during classes 	 Laboratory
Student is able to define real world problemes and present them as computational problmes, critialy analise solutions and assess computational complexity		a quizan ongoing monitoring during classes	• Laboratory
Student is able to implement typical algorithms, such as sorting, searching, etc.		• an evaluation test	LectureLaboratory

Outcome description Outcomesymbols Methods of verification The class form

Student is able to solve algorithmic problem, implement it in C language, run and test \dots

• a quiz

- Laboratory
- an ongoing monitoring during classes

Assignment conditions

Lecture - exam - in order to get a credit it is necessary to pass all of the required tests (oral or written)

Laboratory - the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester

Calculation of the final Grade: lecture 50% + laboratory 50%

Recommended reading

- 1. Kernighan B. W., Ritchie D. M.: Język Ansi C, WNT, Warszawa, 1994.
- 2. Sielicki A.: Laboratorium programowania w języku Pascal, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1994

Further reading

- 1. Aho A. V., Hopcroft J. E., Ullman J. D.: Projektowanie i analiza algorytmów, Helion, Warszawa, 2003.
- 2. Banachowski L., Diks K., Rytter W.: Algorytmy i struktury danych, WNT Warszawa, 2001.
- 3. Roszkowski J.: Analiza i projektowanie strukturalne, Helion, Gliwice, 2002.
- 4. Wirth N.: Algorytmy + struktury danych = programy, WNT, Warszawa,1989.

Notes

Modified by dr hab. inż. Wojciech Paszke, prof. UZ (last modification: 12-07-2021 07:56)

Generated automatically from SylabUZ computer system