Fundamentals of data analysis - course description

	, ,
General information	
Course name	Fundamentals of data analysis
Course ID	11.2-WE-BizEIP-PodAnalDanych-Er
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	E-business
Education profile	practical
Level of studies	First-cycle Erasmus programme
Beginning semester	winter term 2021/2022

Course information	
Semester	1
ECTS credits to win	5
Course type	obligatory
Teaching language	english
Author of syllabus	• prof. dr hab. inż. Dariusz Uciński

Classes forms							
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment		
Lecture	30	2	-	-	Exam		
Class	30	2	-	-	Credit with grade		

Aim of the course

Provide basic knowledge of qualitative and quantitative data analysis.

Form a critical view on the credibility of statistical analysis in engineering.

Give basic skills of uncertainty estimation in practical experimental studies in engineering.

Prerequisites

Engineering mathematics.

Scope

Measurement uncertainty. Propagation of uncertainty. Random and systematic errors. Statistical sampling study. Frequency distribution. Histogram. Summary statistical measures of location, variability, asymmetry and concentration. Rejection of outliers.

Probability. Sample space. Basic definitions of probability: classical, frequency and modern. Fundamental properties of probability. Conditional probability. Independence. Total probability theorem. Bayes' Theorem.

Discrete and continuous random variables. Discrete random variables. Distributions: binomial, Bernoulli, Poisson and geometric. Functions of random variables. Expected value and variance. Joint probabilisty distributions of many random variables. Independence of random variables. Continuous random variables. Uniform distribution. Exponential distribution. Cumulative distribution function of a random variable. Normal distribution.

Fundamentals of statistical inference. Types of random samples. Simple random sample. Distributions: chi-square, t-Student and Fisher-Snedecor. Point and interval estimation. Unbiasedness, consistency, efficiency and sufficiency. Parameter and non-parameter estimation. Confidence intervals for the mean. Limit theorems. Interval estimates of the proportion, variance, standard deviation, differences between proprtions and means. Determining the required sample size.

Hypothesis testing. One- and two-sided tests of the mean. Testing the proportion. Testing the variance. Selecting the test procedure.

Teaching methods

Lecture, exercise classes.

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Outcome description	Outcome symbols	Methods of verification	The class form	
Can make preliminary data analysis and pass from a probabilistic model to	0	• a quiz		
statistical inference		 an ongoing monitoring during cla 	isses	
		 on-going assessment in the class 	srom, test	
Is aware of the importance of data analysis in engineering practice		• a quiz	• Lecture	
		• test		
Can make use of common probability distributions (Bernoulli, Poisson,		• a quiz		
normal, t-Student, F, chi-square)		 an ongoing monitoring during cla 	isses	
		 ongoing assessment in the class 	room, test	
Can properly select and evaluate measures of centrality and dispersion		• a quiz		
		 an ongoing monitoring during cla 	isses	
		 on-going assessment in the class 	srom, test	
Can critically assess the reliability of statistical analyses		• a quiz		
		• test		
Can construct and interpret confidence intervals		• a quiz		
		 an ongoing monitoring during cla 	isses	
		 on-going assessment in the class 	sroom, test	
Knows and understands the assumptions of statistical tests		• a quiz		
		 an ongoing monitoring during cla 	isses	
		 on-going assessment in the class 	srom, test	

Assignment conditions

Lecture – the passing condition is to obtain a positive marks from a written or oral exam.

Exercice classes – the passing condition is to obtain positive marks from all exercises and tests conducted during the semester.

Calculation of the final grade: lecture 50% + exercice classes 50%

Recommended reading

- 1. Bertsekas, D. P., and Tsitsiklis, J.N., Introduction to Probability, Second Edition, Athena Scientific, 2008
- 2. Montgomery, D.C., and Runger, G.C., Applied Statistics and Probability for Engineers, Wiley, 2013
- 3. Wasserman, L., All of Statistics: Concise Course in Statistical Inference, Springer, 2004
- 4. Black, K., Applied Business Statistics: Making Better Business Decisions, Wiley, 2013

Further reading

- 1. Stephens, L.J., Schaum's Outlines of Beginning Statistics, Second Edition, McGraw-Hill, 2009
- 2. Spiegel, M., and Stephens, L., Schaum's Outlines of Statistics, Fourth Edition, McGraw-Hill, 2011

Notes

Modified by dr hab. inż. Marek Kowal, prof. UZ (last modification: 12-07-2021 11:41)

Generated automatically from SylabUZ computer system