Numerical methods - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Numerical methods
Kod przedmiotu	11.9-WE-ELEKTP-NM-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	3
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	prof. dr hab. Roman Gielerak

Formy zajęć							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Wykład	15	1	-		Zaliczenie na ocenę		
Laboratorium	15	1	-	-	Zaliczenie na ocenę		

Cel przedmiotu

After this course, students should be able to:

- Apply standard techniques to analyze key properties of numerical algorithms performed within floating-point arithmetic regime, such as stability and convergence.
- · Understand and analyze common pitfalls in numerical computing such as ill-conditioning and instability.
- · Perform data analysis efficiently and accurately using data fitting method based on interpolation and approximation techniques.
- Derive and analyze numerical methods for ODEs
- · Implement a range of numerical algorithms efficiently in a Matlab computing/ programming environment

Wymagania wstępne

Foundations of Calculus, Foundations of Linear Algebra

Zakres tematyczny

Basics of computer arithmetic. Floating-point representations. Roundoff error. Loss of significance.

Nonlinear Equations: Bisection method. Secant method. Fixed-point based methods: Newton -Raphson method. Multidimensional Newton method.

Linear Systems: Gaussian elimination process. Gaussian elimination with scaled partial pivoting. Condition Numbers. Tridiagonal and banded systems. LU decomposition. Eigenvalues and eigenvectors. Singular value decomposition.

Interpolation and Numerical Differentiation: Polynomial interpolation schemes- Lagrange and Newton constructions. Runge effects Cubic splines construction. Estimating derivatives.

Numerical Integration: Trapezoid, Simpson's and general Newton-Cotes series rules. Gaussian quadratures.

Approximation schemes: least squares problems. Fourier series and theirs summations.

Ordinary differential equations .Initial Values Problems: Taylor series methods. Euler's method. Runge-Kutta methods.

Metody kształcenia

- Series of conventional lectures

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Knowledge of basic linear algebra algorithms	 bieżąca kontrola na zajęciach 	 Wykład
	 kolokwium 	 Laboratorium
	 test końcowy 	
Knowledge of floating-point arithmetic, its weaknesses, and the risks	 bieżąca kontrola na zajęciach 	• Wykład
associated with its use	 kolokwium 	 Laboratorium
	 test końcowy 	
Knowledge of the simplest methods of curve fitting: interpolation,	 bieżąca kontrola na zajęciach 	• Wykład
approximation, Fourier discrete transformations	 kolokwium 	 Laboratorium
	 test końcowy 	

Warunki zaliczenia

Assignments The laboratory tests and the final test are both written individual papers with emphasis on the interpretation of the results. The problem sets are also individual assessments. These involve numerical implementation of algorithms and guided development of methodologies. As such, some problems require simple programming in Matlab.

Final grade will be formed on the basis on the laboratory activity and achievements there together with the result of final test.

Literatura podstawowa

1. Robert J Schilling, Sandra I Harries, " Applied Numerical Methods for Engineers using MATLAB and C.", 3rd edition

2. Richard L. Burden, J.Douglas Faires, "Numerical Analysis 7th edition", Thomson /

3. John. H. Mathews, Kurtis Fink ," Numerical Methods Using MATLAB 3rd edition " ,Prentice Hall publication

Literatura uzupełniająca

1. Laboratory Notes

2. Matlab documentation

Uwagi

Zmodyfikowane przez dr hab. inż. Paweł Szcześniak, prof. UZ (ostatnia modyfikacja: 08-07-2021 21:49)

Wygenerowano automatycznie z systemu SylabUZ