Electrical machines and drives - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Electrical machines and drives
Kod przedmiotu	06.2-WE-ELEKTP-EMaD-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocieSemestr4Liczba punktów ECTS do zdobycia5Typ przedmiotuobowiązkowyJęzyk nauczaniaangielskiSylabus opracował• prof. dr hab. inż. Robert Smoleński

Formy zajęć							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Laboratorium	30	2		-	Zaliczenie na ocenę		
Wykład	30	2	-	-	Zaliczenie na ocenę		

Cel przedmiotu

- familiarizing of students with the construction, principle of operation and electromechanical characteristics of the basic electrical machines;
- creations of skills in the exploitation of basic electrical machines;

Wymagania wstępne

Physics I and II, Fundamentals of Electrical Engineering, Circuit Theory I, Materials Engineering, Fundamentals of electronics and power electronics

Zakres tematyczny

Basic electrodynamics' laws in electric machines theory. Induced voltage. Conditions of electromagnetic torque formation. Electromagnetic torque asynchronous, synchronous (excited and reluctance) and electromagnetic torque of commutator motors.

Construction elements of electric machines.

Transformers. One-phase-transformer, three-phase-transformer, winding connections, transformer ratio, voltage, hour indication of vector group, parallel work of three-phasetransformers. Power balance, efficiency.

Induction motors (asynchronous). Mathematical model of three-phase induction motor. Steady state of induction motor. Equivalent circuit. No load and short-circuit condition, power balance, currents and torque in steady state. Mechanical characteristic, Kloss formula, electrodynamics and electromagnetic transients of induction motors. Typical waveforms of currents, speed and torque. Two-phase induction motors. Power balance, efficiency.

Synchronous motors. Construction, basis of work of three-phase synchronous motor. Mathematical model of three-phase synchronous motor. Synchronization, field forcing, field suppression. Synchronous motor start-up, steady state of synchronous motor. Equivalent circuit, vector diagram for motor and generator state. Load, no-load and shorting condition. Electric grid and single generator work. Reluctance motors. Permanent magnet motors. Synchronous motor fed-by current source inverter. Power balance, efficiency. *Direct current motors*. Mathematical model of DC motor. Separately excited DC motor, series connected DC motor. Start-up, speed control, braking of DC motors. Printed circuit DC motors, brushless DC motors. Power balance, efficiency

Metody kształcenia

Lecture, laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can analyze operating properties of machines in the technical and economic context		kolokwiumodpowiedź ustna	• Wykład
Can explain conditions for occurrence of electro-magnetic moment, electro-magnetic asynchronous and synchronous (ignition and reluctance) moment, commutator machine electromagnetic moment		kolokwiumodpowiedź ustna	WykładLaboratorium

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can select a machine matching driving requirements		kolokwiumodpowiedź ustna	WykładLaboratorium
Is aware of the effects of individual drives on the electric power system		kolokwiumodpowiedź ustna	WykładLaboratorium

Warunki zaliczenia

Lecture – in order to get a credit it is necessary to pass all of the required tests (oral or written) Laboratory - in order to get a credit it is necessary to earn positive Grades for all laboratory works defined by tutor Calculation of the final grade: lecture 60% + laboratory 40%

Literatura podstawowa

- 1. Boldea I., Nasar S. A, Electric Drives, CRC Press, 1999
- 2. Sen P.C., Principles of Electrical Machines and Power Electronics, John Willey and Sons, Inc., New York, USA. 1997
- 3. Kaźmierkowski M. P., Tunia H., Automatic Control of Converter-Fed Drives, Warsaw Amsterdam New York Tokyo: PWN-ELSEVIER SCIENCE PUBLISHERS, 1994
- 4. Kaźmierkowski M. P., Blaabjerg F., Krishnan R., Control in Power Electronics, Selected Problems, Elsevier, 2002
- 5. Kaźmierkowski M. P. and Orłowska-Kowalska T., Neural Network estimation and neurofuzzy control in converter-fed induction motor drives, Chapter in Soft Computing in Industrial Electronics, Springer Verlag, Heidelberg, 2002
- 6. Leonhard W., Control of Electrical Drives, Springer, Berlin, New York, 2001
- 7. Miller T. J. E., Brushless Permanent-Magnet and Reluctance Motor Drives, Oxford University Press, Oxford, England, 1989

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Paweł Szcześniak, prof. UZ (ostatnia modyfikacja: 08-07-2021 21:49)

Wygenerowano automatycznie z systemu SylabUZ