Computer engineering design - opis przedmiotu

Inform	acie	000	ine
	aoje	90	

Informacje ogolne	
Nazwa przedmiotu	Computer engineering design
Kod przedmiotu	06.2-WE-ELEKTP-CED-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacie o przedmiocie

Semestr	5
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Janusz Kaczmarek, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Projekt	30	2	-	-	Zaliczenie na ocenę
Laboratorium	30	2		-	Zaliczenie na ocenę
Wykład	15	1		-	Zaliczenie na ocenę

Cel przedmiotu

- To familiarize students with the basics of designing electronic devices using EDA software
- · Shaping skills in editing schematic diagrams and performing computer simulation of electronic circuits
- To familiarize students with basic techniques of designing and creating a software of computer measurement systems using specialized graphical programming environments
- Shaping skills in the field of developing software using LabVIEW

Wymagania wstępne

- Electronics
- Metrology
- Principles of programming

Zakres tematyczny

Methodology of designing an electronic circuit using EDA system. Basic concepts on capturing a circuit as a schematic diagram: netlist, wires and buses. Component library structure: part, symbol, package and padstack. Printed Circuit Board designing using layout editor. Methods of placing components and routing traces. Designing one, two and multilayer PCB. Automatic routing of PCB traces with an autorouter tool. Design rule check in EDA systems.

Computer simulation of electronic circuits. SPICE simulation fundamentals. Types of simulation analysis: nonlinear dc, small signal ac, transient, sensitivity and distortion. Models of electronic devices. Analysis of simulation results.

Producing design documentation and CAM files in EDA systems.

Basic knowledge of the virtual instruments. Basic definitions. Characteristic of integrated software environments to designing the software for virtual instruments and measurement systems.

Introduction to programming in LabVIEW. Concept of the graphical programming language G. Building a front panel and block diagram. Basic and composite data types. Controlling program execution with loops and structures: for, while, shift-register mechanism, case, sequence, formula node. Operations on arrays and strings.

Hierarchical programming. Global and local variables. Polling and event-driven programming models. Express technology.

Characteristics of library functions for analysis and processing of measurement signals.

Metody kształcenia

Lecture: conventional lecture

Laboratory: laboratory exercises, group work

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student has basic knowledge about designing electronic devices using EDA software		 projekt test z pytaniami zamkniętymi i otwartymi wykonanie sprawozdań laboratoryjnych 	WykładLaboratoriumProjekt
Student has the ability to create software in LabVIEW environment		 bieżąca kontrola na zajęciach wykonanie sprawozdań laboratoryjnych 	• Laboratorium
Student knows basic design and creation techniques of computerized measurement systems software with the application of graph specialized		• kolokwium	 Wykład

programming environments

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Project - the project documentation and oral presentation

Calculation of the final grade: lecture 30% + laboratory 35% + project 35%

Literatura podstawowa

- 1. Horowitz P., Hill W., The Art of Electronics, Cambridge University Press, 2015.
- 2. Wilson P.: The Circuit Designer's Companion, Newnes, 2017.
- 3. Rymarski Z., Materials technology and construction of electronic circuits. Designing and production of electronic circuits, Wydawnictwo Politechniki Śląskiej, Gliwice, 2000 (in Polish).
- 4. Dobrowolski A., Under the mask of SPICE, BTC, Warszawa, 2004 (in Polish).
- 5. Essick J.: Hands-On Introduction to LabVIEW for Scientists and Engineers, Oxford University Press, 2012.

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Janusz Kaczmarek, prof. UZ (ostatnia modyfikacja: 10-07-2021 13:47)

Wygenerowano automatycznie z systemu SylabUZ