Distributed energy sources and electric transport - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Distributed energy sources and electric transport
Kod przedmiotu	06.2-WE-ELEKTP-DESandET-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie	
Semestr	5
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	

Formy zajęć							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Projekt	15	1	-	-	Zaliczenie na ocenę		
Ćwiczenia	15	1	-	-	Zaliczenie na ocenę		
Laboratorium	15	1	-	-	Zaliczenie na ocenę		
Wykład	30	2	-	-	Egzamin		

Cel przedmiotu

To familiarize students with issues related to distributed sources of electricity and heat as well as with electric vehicles and charging infrastructure.

Wymagania wstępne

Fundamentals of electrical engineering, Physics

Zakres tematyczny

Sun energy. Flat, vacuum and air solar collectors. Photovoltaic installations, parabolic, with central belief and Stirling motors.

Wind energy. Wind generators with vertical, horizontal axis of rotation and kite generators. Offshore wind energy.

Geothermal energy. Basics of operation and construction of heat pumps.

Biogas, biomass and waste heat. Fermentation as a way of obtaining biogas.

The use of electrolysis and hydrogen. Fusion.

Ways to control the output power of distributed sources. Impact of distributed sources on the system network.

Electricity storage technologies.

Hybrid vehicles: serial and parallel hybrid. Range extenders. Battery electric vehicles. Electric vehicle charging standards. Hydrogen vehicles. Electric and hydrogen vehicle charging infrastructure. Impact of charging infrastructure on the system network.

Metody kształcenia

Lecture: conventional lecture, problem lecture, discussion

Exercises: consultations, project method, accounting exercises

Laboratory: work in groups, laboratory exercises

Project: project method, discussions and presentations

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole Metody weryfikacji Forma zajęć efektów

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Characterizes distributed energy sources and energy storage technologies. Characterizes types of electric vehicles.		 egzamin - ustny, opisowy, testowy i inne 	 Wykład
Is able to design distributed energy sources systems, storage systems.		• projekt	• Projekt
Is able to estimate the impact of distributed sources on the power system. He can choose		aktywność w trakcie zajęć	• Ćwiczenia
the elements of distributed systems and energy storage. Is able to estimate construction		 bieżąca kontrola na zajęciach 	1
costs and payback time of investments in distributed energy sources.		kolokwium	
Knows the properties of distributed energy sources, electricity storage, charging		 bieżąca kontrola na zajęciach 	• Laboratorium
infrastructure and battery vehicles.		 wykonanie sprawozdań 	
		laboratoryjnych	

Warunki zaliczenia

Lecture - the condition of passing is obtaining a positive grade from the exam.

Exercises - the condition for passing is passing 3 tests on problem solving skills.

Laboratory - the pass condition is to obtain positive grades from all laboratory exercises carried out under the program.

Project - the condition for getting credit is obtaining positive grades from all project tasks implemented under the program.

Components of the final grade = lecture: 45% + exercises: 20 + laboratory: 20% + project 15%

Literatura podstawowa

- 1. Heier S., Waddington R.: Grid Integration of Wind Energy Conversion Systems, John Wiley & Sons, 2006.
- 2. Luque A.: Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003.
- 3. O'Hayre R.: Fuel Cell Fundamentals, John Wiley & Sons, 2006.

Literatura uzupełniająca

- 1. Klugmann E., Klugmann-Radziemska E.: Alternatywne źródła energii. Energetyka fotowoltaiczna, Wydawnictwo Ekonomia i Środowisko, Białystok, 1999.
- 2. Lewandowski W.: Proekologiczne źródła energii odnawialnej, WNT, Warszawa, 2001.
- 3. Marecki J.: Podstawy przemian energii, WNT, Warszawa, 1995.

Uwagi

Zmodyfikowane przez dr hab. inż. Paweł Szcześniak, prof. UZ (ostatnia modyfikacja: 08-07-2021 21:49)

Wygenerowano automatycznie z systemu SylabUZ