Power electronics - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Power electronics
Kod przedmiotu	06.2-WE-ELEKTP-PE-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie	
Semestr	4
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Zbigniew Fedyczak, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2		-	Zaliczenie na
					ocenę

Cel przedmiotu

Familiarize students with the properties of terminal and limit parameters of the switches and power electronic topologies and basic characteristics of the power converters types AC / DC, DC / DC, AC / AC and DC / AC.

Formation among the students understand the basic issues concerning the quality of the electrical energy conversion; - shaping skills in the selection of the type of power electronic converter in the power systems.

Wymagania wstępne

Mathematical analysis, Linear algebra, Electrical engineering principles, Circuit theory.

Zakres tematyczny

Basic power electronics circuits (general description). Power electronics historical outline. Application area. Types of power electronic converters (PEC), their classification and basic functions. A semiconductor device as a power electronics switch and its thermal model. Basic parameters and conversion quality evaluation of the PEC. Coefficients or factors: efficiency, total harmonics distortion, power, deformations, displacement, non-symmetry at non-sinusoidal current circumstances. Non-controlled and controlled rectifiers (AC/DC converters).

Topologies and properties of single-, two and six-pulsed non-controlled rectifiers. Single- and three-phase thyristor rectifiers with phase control. Influence of the rectifiers on supplying source. Examples of applications.

DC/DC PWM voltage and current stabilizators (DC/DC converters). Topologies and properties of the impulse DC stabilizators types buck, boost, buck-boost and H-bridge with PWM control. Examples of applications.

Single-phase AC choppers (AC/AC converters, f1 = f2). Solid state relay and thyristor choppers. Phase angle and integral control. Operation and static characteristics at R and RL load, power factor. Examples of applications.

Inverters (DC/AC converters). Single-phase voltage source inverters. Functioning and properties of the transistorized inverters at different load. The PWM control strategy in the inverters. Output voltage and frequency control. Operation general description of three-phase voltage source inverter with square wave modulation and sinus PWM. Examples of applications.

Problems and development trends of the PEC. Intelligent power module, multilevel converters, resonance converters. Future trends.

Metody kształcenia

Lecture, laboratory exercises, project

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Has an elementary knowledge on the application areas of basic power	 bieżąca kontrola na zaj 	ęciach • Wykład
converters	 kolokwium 	 Laboratorium

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Has an elementary knowledge on the functions of basic power converters,		 bieżąca kontrola na zajęciach 	 Wykład
terminal properties of basic power switches		 kolokwium 	Laboratorium
Has an elementary knowledge on topologies and properties of basic AC/DC,		 bieżąca kontrola na zajęciach 	 Wykład
DC/DC, AC/AC and DC/AC converters		 kolokwium 	 Laboratorium

Warunki zaliczenia

Lecture - obtaining a positive Grade in written or oral Exam.

Laboratory - the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Calculation of the final Grade: lecture 60% + laboratory 40%.

Literatura podstawowa

1. Mohan N., Power Electronics: Converters, Application and Design, John Wiley & Sons, 1998.

2. Trzynadlowski A., Introduction to modern power electronics, John Wiley & Sons, 1998.

3. Erickson R., W., Maksimowić D.: Fundamentals of power electronics. Kluver Academic Publishers, 1999.

4. Holms D., G., Lipo T., A.: Pulse width modulation for power converters. Principles and practice. John Wiley & Sons Inc., 2003

Literatura uzupełniająca

1. Piróg S., Power electronics, AGH Publishing House, Cracow, 2006 (in Polish).

2. Mikołajuk K., Fundamentals of power electronic circuits analysis, PWN, Warsaw, 1998 (in Polish).

Uwagi

Zmodyfikowane przez dr hab. inż. Zbigniew Fedyczak, prof. UZ (ostatnia modyfikacja: 13-07-2021 11:32)

Wygenerowano automatycznie z systemu SylabUZ