Embedded systems - course description

General information			
Course name	Embedded systems		
Course ID	11.9-WE-INFP-EmS-Er		
Faculty	Faculty of Engineering and Technical Sciences		
Field of study	Computer Science		
Education profile	academic		
Level of studies	First-cycle Erasmus programme		
Beginning semester	winter term 2021/2022		

Course information

Semester	5
ECTS credits to win	6
Course type	obligatory
Teaching language	english
Author of syllabus	• prof. dr hab. inż. Alexander Barkalov

Classes forms

The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)		Hours per week (part-time) Form of assignment	
Lecture	15	1	-	-	Exam
Laboratory	30	2	-	-	Credit with grade
Project	15	1	-	-	Credit with grade

Aim of the course

- familiarizing students with basic technologies related to embedded systems
- shaping the skills of designing simple embedded systems

Prerequisites

Logic for IT specialists, Computer architecture I, Algorithms and data structures

Scope

Introductory information: characteristics, organization, system design requirements

prisoners; real time, reactivity. Designing: specification, modeling, verification, implementation; formal specification models - FSM, CFSM, state diagram; integrated hardware and software design. Real-time systems: time requirements, process status, priorities, task scheduling, shared resources, races, critical regions. Concurrent processes: processes and communication, transmission of information, shared resources, deadlocks, semaphores, monitors. Interfaces and communication: bus, ports, protocol concept, interrupt and interrupt-controlled, DMA, bus arbitration, serial protocols, parallel protocols, wireless protocols. Printed circuits: development of schematic diagrams, connection lists, enclosures, circuit design printed, circuit making technologies, assembly.

Teaching methods

lecture: conventional lecture laboratory: laboratory exercises project: project method

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
He can design a simple embedded system and real-time system		 an ongoing monitoring during classes 	 Laboratory
		• carrying out laboratory reports	 Project
He can handle selected tools supporting the design of embedded		• an ongoing monitoring during classes	 Laboratory
systems		• carrying out laboratory reports	 Project
He can propose a functionality description method of embedded systems		• an exam - oral, descriptive, test and other	• Lecture
Is open to technological innovations in the field embedded systems	S	• an exam - oral, descriptive, test and other	• Lecture
		 an ongoing monitoring during classes 	 Laboratory
			 Project
The student can name and characterize the basic concepts regardi embedded systems	ng	• an exam - oral, descriptive, test and other	• Lecture

Assignment conditions

Lecture - The condition for passing is to get a positive grade from the exam

in writing. The condition to take the exam is a positive grade from lab.

Laboratory - the condition for passing is to get positive grades from everyone laboratory exercises planned for implementation as part of the laboratory program (80%) and active participation in classes (20%).

Project - the condition for passing is to get a positive evaluation from the project Components of the final grade = lecture: 40% + laboratory: 30% + project: 30%

Recommended reading

- 1. Vahid F., Givargis T.: Embedded System Design: A Unified Hardware/Software Introduction, Wiley, 2002, ISBN: 978-0-471-38678-0
- 2. Douglass B., Real Time UML Workshop for Embedded Systems, Newnes, 2006
- 3. Sass R., Schmidt A, Embedded Systems Design with Platform FPGAs, Morgan Kaufmann, 2010

Further reading

Notes

Modified by prof. dr hab. inż. Andrzej Obuchowicz (last modification: 18-07-2021 16:18)

Generated automatically from SylabUZ computer system