
Concurrent and distributed programming - course description
General information
Course name Concurrent and distributed programming
Course ID 11.3-WE-INFP-CaDP-Er 
Faculty Faculty of Computer Science, Electrical Engineering and Automatics 
Field of study Computer Science 
Education profile academic
Level of studies First-cycle Erasmus programme
Beginning semester winter term 2021/2022

Course information
Semester 4
ECTS credits to win 6 
Course type obligatory
Teaching language english
Author of syllabus

Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 30 2 - - Credit with grade

Aim of the course
Familiarize students with basic techniques of concurrent programming
Familiarize students with basic techniques of distributed programming
Teach students the fundamental skills of using concurrent and distributed programming techniques
Learn basic skills in developing software used balanced and distributed architecture

Prerequisites
Principles of programming, Java programming, Computer architectures I and II.

Scope
Concurrent programming – basic concept: process, shared resources, critical section, mutual exclusion, synchronization, deadlock, starvation.

Aims of concurrent programming. Advantages and disadvantages of concurrent programming.

Semaphores: general semaphore, binary semaphore, synchronization of processes with usage of semaphores.

Concurrent programming in Java. Monitors. Additional methods of threads synchronization: blocking queued, barriers, countdown of latch and exchanger.

Classical problems of concurrent programming: dining philosophers problem, producer-consumer problem, readers-writers problems.

Characterization of Distributed Systems. Inter-process communication. Guidelines for design of inter-process communication.

Remote procedure call (RPC). Remote method invocation (RMI). How to build of distributed applications in Java RMI. Integration different distributed environments.

Time and coordination in distributed systems. Logical clock. Election algorithm. Transactions and concurrency control in distributed systems. Algorithms for deadlock detection 
in distributed systems.

Teaching methods
Lecture: conventional lecture
Laboratory: laboratory exercises, group work

Learning outcomes and methods of theirs verification
Outcome description Outcome symbols Methods of verification The class form
Can describe the mechanism of communication layer design and the issues 
connected with data exchange in distributed systems

a quiz
a test

Laboratory

Can distinguish basic architectural models used for the design of distributed 
systems

an exam - oral, descriptive, test and 
other

Lecture

Is aware of the need to use distributed systems and programs an exam - oral, descriptive, test and 
other

Lecture

https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/


Outcome description Outcome symbols Methods of verification The class form
Can explain the need for application of concurrent programming an exam - oral, descriptive, test and 

other
Lecture

Can design and create object-oriented software employing concurrent and 
distributed programming mechanisms

an ongoing monitoring during 
classes

Laboratory

Can explain the mechanisms of coordination of activities in distributed systems a quiz
a test

Laboratory

Assignment conditions
Lecture - obtaining a positive grade in written exam. 
Laboratory - the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.
Calculation of the final grade: = lecture 50% + laboratory 50%.

Recommended reading
1.  Ben-Ari M.: Principles of Concurrent and Distributed Programming, Addison-Wesley, 2006.
2.  Foster I.: Designing and Building Parallel Programs, (2020) https://www.mcs.anl.gov/~itf/dbpp/
3.  Coulouris G. et al.: Distributed Systems. Concepts and Design, Addison Wesley, 2005.
4.  Tanenbaum S., Maarten van Steen: Distributed Systems. Principles and Paradigms, Prentice Hall, 2016

(2020) - Distributed systems https://www.distributed-systems.net/index.php/books/ds3/ds3-sneak-preview/
5.  Garg V. K.: Concurrent and Distributed Computing in Java. Wiley-IEEE Press, 2004.
6.  Cay S. Horstmann, Gary Cornell: Core Java, Vol. 1: Fundamentals, Prentice Hall PTR, 2018
7. Cay S. Horstmann: Core Java, Vol. 2: Advanced Features, Prentice Hall PTR, 2019
8. Kathy Sierra, Bert Bates: Head First Java, 2nd Edition, O'Reilly Media, 2009
9.  Goetz B., Peierls T., Bloch J., Bowbeer j., Holmes D., Lea D.: Java Concurrency in Practice, Addison-Wesley Professional, 2006.

10. Burns B.: Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services, O'Reilly, 2018

Further reading
1. Roger Wattenhofer: Principles of Distributed Computing, Spring 2016, (2020) https://disco.ethz.ch/courses/podc_allstars/lecture/podc.pdf
2. Distributed Systems for fun and profit (2020) http://book.mixu.net/distsys/single-page.html

Notes

Modified by dr inż. Tomasz Gratkowski (last modification: 21-07-2021 10:03)

Generated automatically from SylabUZ computer system

https://www.mcs.anl.gov/~itf/dbpp/
https://www.mcs.anl.gov/~itf/dbpp/
https://www.mcs.anl.gov/~itf/dbpp/
https://www.distributed-systems.net/index.php/books/ds3/ds3-sneak-preview/
https://www.distributed-systems.net/index.php/books/ds3/ds3-sneak-preview/
https://www.distributed-systems.net/index.php/books/ds3/ds3-sneak-preview/
https://disco.ethz.ch/courses/podc_allstars/lecture/podc.pdf
https://disco.ethz.ch/courses/podc_allstars/lecture/podc.pdf
https://disco.ethz.ch/courses/podc_allstars/lecture/podc.pdf
http://book.mixu.net/distsys/single-page.html
http://book.mixu.net/distsys/single-page.html
http://book.mixu.net/distsys/single-page.html

