Data safety and cryptography - opis przedmiotu

Informacje ogolne	
Nazwa przedmiotu	Data safety and cryptography
Kod przedmiotu	11.3-WE-INFP-DSaC-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Informatyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie Semestr 5 Liczba punktów ECTS do zdobycia 5 Typ przedmiotu obowiązkowy Język nauczania angielski • prof. dr hab. inż. Remigiusz Wiśniewski Sylabus opracował

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1		-	Zaliczenie na ocenę
Laboratorium	30	2		-	Zaliczenie na ocenę
Projekt	15	1	-	-	Zaliczenie na ocenę

Cel przedmiotu

- Familiarize students with the provide basic knowledge about the fundamentals of cryptography and data safety.
- Familiarize students with the basic knowledge about applied cybersecurity (passwords, computer viruses and malware, firewalls, backups, SPAM, etc.).

Wymagania wstępne

Principles of programming (but not obligatory).

Zakres tematyczny

Introduction: Fundamentals of cryptography and data safety, cryptosystems, basics of encryption and decryption, classic cryptography (transposition ciphers and substitution ciphers; Caesar cipher, Vigenère cipher, XOR, etc.). Implementation of the basic algorithms in programming languages.

Symmetric-key algorithms: Key management, block ciphers (DES, AES, Blowfish) and stream ciphers (RC4).

Optional: implementation in programming languages (C, C++, Java, Assembler, Pascal), hardware implementation (with programmable devices like FPGAs).

Asymmetric-key algorithms: Public and private keys, hash functions. Main protocols and cryptosystems (Diffie-Hellman, RSA, SHA, MD5, etc.).

Optional: Implementation in programming languages (C, C++, Assembler, Pascal). Hardware implementation (with programmable devices - FPGAs).

Digital signature: Fundamentals of digital signature, safety and authentication, smartcards.

Cryptanalysis: Main goals of cryptanalysis. Weakness of particular cryptosystems. Data safety. Debugging of computer applications and programs.

Data security and protection of applications: Fundamentals of data protection of programs and applications (based on MS Windows operation system). Processes management and debugging. Software debuggers and kernel mode debuggers.

Security in Web applications: Most popular attacks and protection methods (e.g. Cross-site scripting XSS, SQL-Injection).

Applied cybersecurity: protection of passwords, computer viruses and malware, firewalls, backups, SPAM.

Metody kształcenia

Lecture, laboratory exercises, project.

Efekty uczenia się i metody weryfikacji osjagania efektów uczenia się

================================						
Opis efektu	Symbole	Metody weryfikacji	Forma zajęć			
	efektów					

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can apply existing cryptographic algorithms in securing computer applications		 bieżąca kontrola na zajęciac projekt 	h • Laboratorium • Projekt
Can protect transmitted data		 bieżąca kontrola na zajęciac dyskusja kolokwium obserwacja i ocena aktywności na zajęciach 	h • Wykład • Laboratorium
Can recognize and minimize the threats related to data security in computer applications and digital systems		• kolokwium	• Wykład
Has a basic knowledge on legal aspects of data protection		sprawdzianbieżąca kontrola na zajęciac	• Laboratorium h
Has a detailed knowledge on data protection and security in computer applications and computer programs		bieżąca kontrola na zajęciacprojekt	h • Laboratorium • Projekt
Understands the need to protect information systems, is aware of the necessity to apply protections in daily life (access to electronic/computer data, application of electronic cards and digital signature)	Т	 bieżąca kontrola na zajęciac dyskusja kolokwium sprawdzian 	h • Wykład • Laboratorium

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the final test (or other tasks given by the teacher).

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester (or other tasks given by the teacher).

Project - the passing condition is to obtain a positive mark from all projects conducted during the semester (or other tasks given by the teacher).

Final mark components: lecture 30% + laboratory 40% + project 30%.

Literatura podstawowa

- 1. Stinson D.R., Cryptography: Theory and Practice (4th edition), CRC Press, Boca Raton, 2017.
- 2. Schneier B., Applied cryptography, John Wiley & Sons, New York, 1994.

Literatura uzupełniająca

- 1. Cormen T., Leiserson C., Rivest R., Stein C., Introduction to Algorithms (3rd edition), MIT Press, 2016.
- 2. Maxfield C.: The Design Warrior's Guide to FPGAs. Devices, Tools and Flows, Elsevier, Amsterdam, 2004.
- 3. Mitnick K.: The Art of Invisibility (edition 2017), Little, Brown Book Group, 2017.
- 4. Karbowski M., Basics of cryptography (3rd edition), Helion, Warsaw, 3rd. ed., 2015 (in Polish).

Uwagi

Zmodyfikowane przez prof. dr hab. inż. Remigiusz Wiśniewski (ostatnia modyfikacja: 16-07-2021 22:31)

Wygenerowano automatycznie z systemu SylabUZ