Systems and computer networks security - opis przedmiotu

-	
Informacje ogólne	
Nazwa przedmiotu	Systems and computer networks security
Kod przedmiotu	11.3-WE-INFP-SaCNS-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Informatyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2021/2022

Informacje o przedmiocie	
Semestr	5
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Bartłomiej Sulikowski, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Zaliczenie na ocenę
Laboratorium	30	2	-	-	Zaliczenie na ocenę

Cel przedmiotu

- familiarizing the student with cryptographic algorithms and protocols
- development of skills in the use of information security procedures
- familiarizing the student and shaping the skills of defining and applying security policy in company

Wymagania wstępne

Computer networks

Zakres tematyczny

Information Safety. Definitions. Infrastructure. Security models.

Access to the system. System access control. User access management. Range of the user responsibility. Risk estimation and management.

Cryptography. Symmetric algorithms (DES, 3DES, AES, Twofish, RCx family, Serpent, Mars) and asymmetric (RSA, DH, ElGamal, EC). Cryptographic protocols. Public key cryptography. Hashing functions. Electronic signature and its verification. Certification of devices and users. PKI architecture. Other services using cryptography. Quantum cryptology.

Security of teleinformatic systems and networks. Types of attacks. Firewalls (IDS and IPS). Physical security. Alarm systems. Protection against electro-magnetic eavesdropping - TEMPEST standard.

Security policies. The role and tasks of the security administrator.

Industrial safety.

Metody kształcenia

lecture: conventional lecture, discussion

laboratory: laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
has knowledge of applications and threats of electronic signature		obserwacja i ocena aktywności na zajęciachsprawdzian	• Laboratorium

Opis efektu	SymboleefektówMetody weryfikacji	Forma zajęć
is capable of choosing cryptosystem parameters in order to mantain prescribed	• dyskusja	 Wykład
functions in data protection	obserwacja i ocena aktywnośc	 Laboratorium
	na zajęciach	
	• sprawdzian	
knows the characteristics of cryptographic algorithms and protocols and hashing	obserwacja i ocena aktywnośc	Wykład
functions	na zajęciach	 Laboratorium
	• sprawdzian	
knows the rules for protection of classified information, in particular physical	• sprawdzian	Wykład
protection and electromagnetic		
Student knows the structure of the protection division in the organizational unit	• sprawdzian	Wykład
(enterprise), understands the tasks of employees of the protection division		
understands the problems related to industrial security	• sprawdzian	Wykład
		 Laboratorium

Warunki zaliczenia

Lecture - the condition for passing is to obtain positive grades from the knowledge tests in the written form, carried out at least once per semester Laboratory - the condition to pass is the realization of at least 80% of the planned exercises

Components of the final grade = lecture: 50% + laboratory: 50%

Literatura podstawowa

- 1. W. Stallings, Cryptography and Network Security Principles and Practices, Prentice Hall, 2018
- 2. S. McClure et al., Hacking Exposed: Network Security Secrets and Solutions, 2012
- 3. B. Halton et al., Kali Linux 2: Windows Penetration Testing, Packt, 2016
- 4. R. Boddington, Practical Digital Forensics, Packt, 2016

Literatura uzupełniająca

- 1. Kutyłowski M., Strothmann W.B.: Kryptografia. Teoria i praktyka zabezpieczania systemów komputerowych, Oficyna Wydawnicza Read ME, Warszawa, 1998.
- 2. Russell R. i in. : Hakerzy atakują. Jak przejąć kontrolę nad siecią, Helion, 2004.
- 3. Potter B., Fleck B.: 802.11. Bezpieczeństwo, Wyd. O'Reilly, 2005.
- 4. Balinsky A. i in.: Bezpieczeństwo sieci bezprzewodowych, PWN, CISCO Press, 2007.
- 5. Mochnacki W.: Kody korekcyjne i kryptografia. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1997.

Uwagi

Zmodyfikowane przez dr hab. inż. Bartłomiej Sulikowski, prof. UZ (ostatnia modyfikacja: 09-09-2021 11:18)

Wygenerowano automatycznie z systemu SylabUZ