Numerical methods - course description

General information	
Course name	Numerical methods
Course ID	11.9-WE-INFD-NumMet-Er
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	Computer Science
Education profile	academic
Level of studies	Second-cycle Erasmus programme
Beginning semester	winter term 2021/2022

Course information		
Semester	1	
ECTS credits to win	4	
Course type	obligatory	
Teaching language	english	
Author of syllabus	• prof. dr hab. Roman Gielerak	

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time)) Form of assignment			
Lecture	15	1	•	-	Credit with grade			
Laboratory	30	2	•	-	Credit with grade			

Aim of the course

-to familarize students with basic numerical algorithms for solving most frequently appearing in the professional activity computational problems

-to introduce students to work within Matlab environement and similar on - engineers oriented packages

Prerequisites

Foundations of calculus and linear algebra, programming foundations

Scope

Float-point arithmetics: arithmetic-conversions, float-point representations, standards od single- and double- precisions formats, classification of numerical errors, numerical instabilities and badly numerically conditioned problems

Linear Algebra problems : linear systems of equations, Gauss elimination methods, iterative methods of Jacobi and Gauss - Seidel. Unstable linear systems, numerical conditiong of systems.

Nonlinear equations case: scalar equations, bisection algorithms and its acceleration by Newton, Newton algorithm, fixed-point algorithms. Newton algorithm for systems of equations. Applications to nonlinear optimalisation problems.

Interpolation:polynomial interpolation methods: Lagrange formula and Newton method, cubic splines techniques. Applications to numerical integration- Newton - Cotes formulas.

Approximation based methods: discrete and continous least -squares approximation problems. Fourier series. Orthogonal polynomials.

Ordinary differential equations algorithms: Euler algorithm. Runge_Kuta algorithms. Application to real problems.

Teaching methods

Series of lectures

Laboratory exercises in Matlab enviroments

Learning outcomes and methods of theirs verification

Outcome description Outcome Methods of verification The class form

symbols

Outcome description	Outcome symbols	Methods of verification	The class form
Knowledga of basic numerical methods and algorithms applied for solving		a final test	 Lecture
computational problems which are used overall in engineering computations		 activity during the classes 	 Laboratory
		 an observation and evaluation of 	
		activities during the classes	
Can use Matlab in computer performed computations		a final test	 Laboratory
		 an observation and evaluation of 	
		activities during the classes	
		 carrying out laboratory reports 	
Is aware of the fact, that computer calculations are always connected with		• a final test	• Lecture
errors, understand their nature and know methods to avoiding these threats		 an evaluation test 	 Laboratory
		 an ongoing monitoring during classes 	

Assignment conditions

Lecture – the necessary passing condition is to obtain a positive grade from final exam. Laboratory – the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Recommended reading

- 1. Lloyd N. Trefethen and David Bau, III: Numerical Linear Algebra, SIAM, 1997
- 2. H.M. Antia: Numerical Methods for Scientists and Engineers, Birkhauser, 2000
- 3. Richard L. Burden, J. Douglas Faires, Numerical analysis, Brooks /Cole Publishing Company, ITP An International Thomson Publishing Company, sixth edition, 1997
- 4. Kendall Atkinson, Elementary numerical anlysis, John Wiley & Sons, Inc., second edition, 1993

Further reading

- 1. Tutorials of Matlab
- 2. List of problems to be solved in Laboratory

Notes

Modified by prof. dr hab. Roman Gielerak (last modification: 14-07-2021 13:00)

Generated automatically from SylabUZ computer system