Numerical methods - opis przedmiotu

Numerical methods
11.9-WE-INFD-NumMet-Er
Wydział Nauk Inżynieryjno-Technicznych
Informatyka
ogólnoakademicki
Program Erasmus drugiego stopnia
semestr zimowy 2021/2022

Informacje o przedmiocie Semestr 1 Liczba punktów ECTS do zdobycia 4 Typ przedmiotu obowiązkowy Język nauczania angielski Sylabus opracował • prof. dr hab. Roman Gielerak

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na ocenę
Laboratorium	30	2	-		Zaliczenie na ocenę

Cel przedmiotu

-to familarize students with basic numerical algorithms for solving most frequently appearing in the professional activity computational problems

-to introduce students to work within Matlab environement and similar on - engineers oriented packages

Wymagania wstępne

Foundations of calculus and linear algebra, programming foundations

Zakres tematyczny

Float-point arithmetics : arithmetic-conversions, float-point representations, standards od single- and double- precisions formats, classification of numerical errors, numerical instabilities and badly numerically conditioned problems

Linear Algebra problems : linear systems of equations, Gauss elimination methods , iterative methods of Jacobi and Gauss -Seidel. Unstable linear systems , numerical conditiong of systems.

Nonlinear equations case :scalar equations , bisection algorithms and its acceleration by Newton , Newton algorithm, fixed-point algorithms .Newton algorithm for systems of equations. Applications to nonlinear optimalisation problems.

Interpolation: polynomial interpolation methods : Lagrange formula and Newton method, cubic splines techniques. Applications to numerical integration- Newton - Cotes formulas.

Approximation based methods : discrete and continous least -squares approximation problems . Fourier series . Orthogonal polynomials .

Ordinary differential equations algorithms: Euler algorithm. Runge_Kuta algorithms. Application to real problems .

Metody kształcenia

Series of lectures

Laboratory exercises in Matlab enviroments

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	SymboleefektówMetody weryfikacji	Forma zajęć
Can use Matlab in computer performed computations	 obserwacja i ocena aktywności na 	 Laboratorium
	zajęciach	
	 test końcowy 	
	 wykonanie sprawozdań 	
	laboratoryjnych	
Is aware of the fact, that computer calculations are always connected with	 bieżąca kontrola na zajęciach 	 Wykład
errors, understand their nature and know methods to avoiding these threats	 kolokwium 	 Laboratorium
	 test końcowy 	
Knowledga of basic numerical methods and algorithms applied for solving	 aktywność w trakcie zajęć 	 Wykład
computational problems which are used overall in engineering computations	 obserwacja i ocena aktywności na 	 Laboratorium
	zajęciach	
	 test końcowy 	

Warunki zaliczenia

Lecture – the necessary passing condition is to obtain a positive grade from final exam. Laboratory – the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Literatura podstawowa

1. Lloyd N. Trefethen and David Bau, III: Numerical Linear Algebra, SIAM, 1997

2. H.M. Antia: Numerical Methods for Scientists and Engineers, Birkhauser, 2000

3. Richard L. Burden, J. Douglas Faires, Numerical analysis, Brooks /Cole Publishing Company, ITP An International Thomson Publishing Company, sixth edition, 1997

4. Kendall Atkinson, Elementary numerical anlysis, John Wiley & Sons, Inc., second edition, 1993

Literatura uzupełniająca

1. Tutorials of Matlab

2. List of problems to be solved in Laboratory

Uwagi

Zmodyfikowane przez prof. dr hab. Roman Gielerak (ostatnia modyfikacja: 14-07-2021 13:00)

Wygenerowano automatycznie z systemu SylabUZ